[1]
Chang SO, Lee JK. The design of a real-time simulator on the hydraulic servo system. Int J Korean Soc Precision Eng 2003; 4(1): 9–14.
Google Scholar
[2]
Cho SK, Lee H-H. A fuzzy-logic anti's wing controller for three-dimensional overhead cranes. ISA Trans 2002; 41(2): 235–43.
DOI: 10.1016/s0019-0578(07)60083-4
Google Scholar
[3]
Davliakos I, Papadopoulos E. Model-based control of a 6-dof electrohydraulic Stewart–Gough platform. Mech Mach Theory 2008; 43(11): 1385–400.
DOI: 10.1016/j.mechmachtheory.2007.12.002
Google Scholar
[4]
Zhao, C., Gao, K., Liu, X., Wen, B., 2008. Control of electrohydraulic servo system for a material test system using fuzzy neural network. In: Proceedings of the world congress on intelligent control and automation (WCICA). Proceedings of the 7th world congress on intelligent control and automation, WCICA'08, p.9351.
DOI: 10.1109/wcica.2008.4593911
Google Scholar
[5]
Barai RK, Nonami K. Optimal two-degree-of-freedom fuzzy control for locomotion control of a hydraulically actuated hexapod robot. Inform Sci 2007; 177(8): 1892–915.
DOI: 10.1016/j.ins.2006.10.003
Google Scholar
[6]
D. Gordic, M. Babic, N. Jovicic, Modelling of spool position feedback servo-valves, International Journal of Fluid power 5 (1) (2004) 37 – 50.
Google Scholar
[7]
D. Gordic, M. Babic, N. Jovicic and D. Milovanovic., Effects of the variation of Torque Motor Parameters on Servo-valve Performanc e, Stronjnisk i vestnik Journal of Mechanical Engineering, 54 (2208) 12, p.866 –873.
Google Scholar
[8]
Nikiforuk P. N, P. R. Ukrainetz and S. C. Tsai (1969) Detailed analysis of a two-stage four-way electrohydraulic flow-control valve. Journal mechanical engineering science. 2, 168-174.
DOI: 10.1243/jmes_jour_1969_011_021_02
Google Scholar
[9]
Lin, S.J., and Akers, A. Squeeze film damping of the motion of a control flapper – nozzle. Proc. Instn. Mech. Engrs Vol 204 No C04, p.109 – 115.
Google Scholar
[10]
Arafa, A., Rizk, M. Spool hydraulic stiffness and flow forces effects in electro-hydraulic servo valves", proc. Instn. Mech. Engrs. Vol . 201 No C3, pp.193-199, (1987).
DOI: 10.1243/pime_proc_1987_201_106_02
Google Scholar
[11]
S H Somashekhar, M Singaperumal, R Krishna Kumar. Modeling the steady state Analysis of a jet pipe electrohydraulic servo valve. IMechE 2006, Vol 220, pp.109-130.
DOI: 10.1243/095965106x78211
Google Scholar
[12]
Maskrey, R. H. and Thayer, W. J. A brief history of electrohydraulic servomechanisms. Moog Tech. Bull., 1978, 141, 110–116.
DOI: 10.1115/1.3426352
Google Scholar
[13]
Merrit, H. E. Hydraulic control systems. John Wiley, Chichester, (1967).
Google Scholar
[14]
Watton, J . Fluid Power Systems: Modeling, Simulation, Analog and Microcomputer Control, Prentice Hall International Ltd. UK, (1989).
Google Scholar
[15]
Lee, S., J.F. Blackburn, "Contribution to Hydraulic Control-1 Steady-State Axial Forces on Control-valve.
Google Scholar
[16]
Burrows,C. R Fluid power servomechanism 1972 (van Nostrand Reinhold Co. ).
Google Scholar
[17]
Arafa, A., Rizk, M. Spool hydraulic stiffness and flow forces effects in electro-hydraulic servo valves", proc. Instn. Mech. Engrs. Vol . 201 No C3, pp.193-199, (1987).
DOI: 10.1243/pime_proc_1987_201_106_02
Google Scholar
[18]
Sharan.A. S, Somashekhar.S. H and Venkatesh.C. S Torque Motor Modelling of an Electrohydraulic Servovalve,. COPEN 06 09-10 Dec 2009 page. J-17-21.
Google Scholar
[19]
Sharan.A. S, Somashekhar.S. H and Venkatesh.C. S Numerical Analysis on Torque Motor Dynamics used in Electrohydraulic Servovalve, The 11th Asian International Conference on Fluid Machinery and 3rd Fluid Power Technology Exhibition . November 21-23, (2011).
Google Scholar