Modeling and Simulation of Jetpipe Servovalve Torque Motor

Article Preview

Abstract:

The torque motor is a precision mechatronic component used to convert low electric signal into linear mechanical displacement of the Jetpipe. Such torque motors are categorized under multi disciplinary engineering systems, which are complex in nature and also induces challenges to integrate with hydraulic system. This paper applies model-based system design approach of jetpipe servovalve torque motor to study the effect of critical parameters like armature length and air gap, feedback spring stiffness, and flexure tube stiffness on the dynamic performance of the were studied.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2308-2313

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Chang SO, Lee JK. The design of a real-time simulator on the hydraulic servo system. Int J Korean Soc Precision Eng 2003; 4(1): 9–14.

Google Scholar

[2] Cho SK, Lee H-H. A fuzzy-logic anti's wing controller for three-dimensional overhead cranes. ISA Trans 2002; 41(2): 235–43.

DOI: 10.1016/s0019-0578(07)60083-4

Google Scholar

[3] Davliakos I, Papadopoulos E. Model-based control of a 6-dof electrohydraulic Stewart–Gough platform. Mech Mach Theory 2008; 43(11): 1385–400.

DOI: 10.1016/j.mechmachtheory.2007.12.002

Google Scholar

[4] Zhao, C., Gao, K., Liu, X., Wen, B., 2008. Control of electrohydraulic servo system for a material test system using fuzzy neural network. In: Proceedings of the world congress on intelligent control and automation (WCICA). Proceedings of the 7th world congress on intelligent control and automation, WCICA'08, p.9351.

DOI: 10.1109/wcica.2008.4593911

Google Scholar

[5] Barai RK, Nonami K. Optimal two-degree-of-freedom fuzzy control for locomotion control of a hydraulically actuated hexapod robot. Inform Sci 2007; 177(8): 1892–915.

DOI: 10.1016/j.ins.2006.10.003

Google Scholar

[6] D. Gordic, M. Babic, N. Jovicic, Modelling of spool position feedback servo-valves, International Journal of Fluid power 5 (1) (2004) 37 – 50.

Google Scholar

[7] D. Gordic, M. Babic, N. Jovicic and D. Milovanovic., Effects of the variation of Torque Motor Parameters on Servo-valve Performanc e, Stronjnisk i vestnik Journal of Mechanical Engineering, 54 (2208) 12, p.866 –873.

Google Scholar

[8] Nikiforuk P. N, P. R. Ukrainetz and S. C. Tsai (1969) Detailed analysis of a two-stage four-way electrohydraulic flow-control valve. Journal mechanical engineering science. 2, 168-174.

DOI: 10.1243/jmes_jour_1969_011_021_02

Google Scholar

[9] Lin, S.J., and Akers, A. Squeeze film damping of the motion of a control flapper – nozzle. Proc. Instn. Mech. Engrs Vol 204 No C04, p.109 – 115.

Google Scholar

[10] Arafa, A., Rizk, M. Spool hydraulic stiffness and flow forces effects in electro-hydraulic servo valves", proc. Instn. Mech. Engrs. Vol . 201 No C3, pp.193-199, (1987).

DOI: 10.1243/pime_proc_1987_201_106_02

Google Scholar

[11] S H Somashekhar, M Singaperumal, R Krishna Kumar. Modeling the steady state Analysis of a jet pipe electrohydraulic servo valve. IMechE 2006, Vol 220, pp.109-130.

DOI: 10.1243/095965106x78211

Google Scholar

[12] Maskrey, R. H. and Thayer, W. J. A brief history of electrohydraulic servomechanisms. Moog Tech. Bull., 1978, 141, 110–116.

DOI: 10.1115/1.3426352

Google Scholar

[13] Merrit, H. E. Hydraulic control systems. John Wiley, Chichester, (1967).

Google Scholar

[14] Watton, J . Fluid Power Systems: Modeling, Simulation, Analog and Microcomputer Control, Prentice Hall International Ltd. UK, (1989).

Google Scholar

[15] Lee, S., J.F. Blackburn, "Contribution to Hydraulic Control-1 Steady-State Axial Forces on Control-valve.

Google Scholar

[16] Burrows,C. R Fluid power servomechanism 1972 (van Nostrand Reinhold Co. ).

Google Scholar

[17] Arafa, A., Rizk, M. Spool hydraulic stiffness and flow forces effects in electro-hydraulic servo valves", proc. Instn. Mech. Engrs. Vol . 201 No C3, pp.193-199, (1987).

DOI: 10.1243/pime_proc_1987_201_106_02

Google Scholar

[18] Sharan.A. S, Somashekhar.S. H and Venkatesh.C. S Torque Motor Modelling of an Electrohydraulic Servovalve,. COPEN 06 09-10 Dec 2009 page. J-17-21.

Google Scholar

[19] Sharan.A. S, Somashekhar.S. H and Venkatesh.C. S Numerical Analysis on Torque Motor Dynamics used in Electrohydraulic Servovalve, The 11th Asian International Conference on Fluid Machinery and 3rd Fluid Power Technology Exhibition . November 21-23, (2011).

Google Scholar