[1]
L.E. Cárdenas-Barrón, J.D. Porter, Supply chain models for an assembly system with preprocessing of raw materials: a simple and better algorithm, Appl. Math. Model. (2013).
DOI: 10.1016/j.apm.2013.03.006
Google Scholar
[2]
T. Sawik, Coordinated supply chain scheduling, Int. J. Product. Econ. 120 (2) (2009) 437–451.
Google Scholar
[3]
M. Bashiri, H. Badri, J. Talebi, A new approach to tactical and strategic planning in production-distribution networks, Appl. Math. Model. 36 (4) (2012) 1703–1717.
DOI: 10.1016/j.apm.2011.09.018
Google Scholar
[4]
D. Ambrosino, M. Grazia Scutellà, Distribution network design: new problems and related models, Eur. J. Oper. Res. 165 (3) (2005) 610–624.
DOI: 10.1016/j.ejor.2003.04.009
Google Scholar
[5]
S. Minner, Multiple-supplier inventory models in supply chain management: a review, Int. J. Product. Econ. 81–82 (2003) 265–279.
DOI: 10.1016/s0925-5273(02)00288-8
Google Scholar
[6]
J. -F. Cordeau, F. Pasin, M.M. Solomon, An integrated model for logistics network design, Annal. Oper. Res. 144 (1) (2006) 59–82.
DOI: 10.1007/s10479-006-0001-3
Google Scholar
[7]
O. Berman, Q. Wang, Inbound logistic planning: minimizing transportation and inventory cost, Transp. Sci. 40 (3) (2006) 287–299.
DOI: 10.1287/trsc.1050.0130
Google Scholar
[8]
Y. H. Lee, Sook Han Kim, Optimal production-distribution planning supply chain management using a hybrid simulation-analytic approach, in: Procedings of the 2000 Winter Simulation Conference, 2000, p.1252–1259.
DOI: 10.1109/wsc.2000.899093
Google Scholar
[9]
A.M. Jamal, B.R. Sarker, S. Mondal, Optimal manufacturing batch size with rework process at a single-stage production system, Comput. Indus. Eng. 47 (1) (2004) 77–89.
DOI: 10.1016/j.cie.2004.03.001
Google Scholar
[10]
M.I.M. Wahab, M.Y. Jaber, Economic order quantity model for items with imperfect quality, different holding cost, and learning effects: a note, Comput. Indus. Eng. 58 (1) (2010) 186–190.
DOI: 10.1016/j.cie.2009.07.007
Google Scholar
[11]
M. Ramezani, M. Bashiri, R. Tavakkoli-Moghaddam, A new multi-objective stochastic model for a forward/reverse logistic network design with responsiveness and quality level, Appl. Math. Model. 37 (1–2) (2013) 328–344.
DOI: 10.1016/j.apm.2012.02.032
Google Scholar
[12]
R.B. Franca, E.C. Jones, C.N. Richards, J.P. Carlson, Multi-objective stochastic supply chain modeling to evaluate tradeoffs between profit and quality, Int.J. Product. Econ. 127 (2) (2010) 292–299.
DOI: 10.1016/j.ijpe.2009.09.005
Google Scholar
[13]
G. Kannan, P. Sasikumar, K. Devika, A genetic algorithm approach for solving a closed loop supply chain model: a case of battery recycling, Appl. Math. Model. 34 (3) (2010) 655–670.
DOI: 10.1016/j.apm.2009.06.021
Google Scholar
[14]
J. Abu Qudeiri, H. Yamamoto, R. Ramli, A. Jamali, Genetic algorithm for buffer size and work station capacity in serial-parallel production lines, Artif. Life Robot. 12 (1–2) (2008) 102–106.
DOI: 10.1007/s10015-007-0449-5
Google Scholar