[1]
A. Shokrani, V. Dhokia, P. Munoz Escalona and S.T. Newman, State of the art cryogenic machining and processing. International Journal of Computer Integrated Manufacturing, Vol. 26 (7) (2013).
DOI: 10.1080/0951192x.2012.749531
Google Scholar
[2]
S. Paul and A.B. Chattopadhyay, Environmentally conscious machining and grinding with cryogenic cooling. Machining Science and Technology, Vol. 10 (1) (2006), pp.87-131.
DOI: 10.1080/10910340500534316
Google Scholar
[3]
N. Dhar, The effects of cryogenic cooling on chips and cutting forces in turning AISI 1040 and AISI 4320 Steels. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 216 (5) (2002), pp.713-724.
DOI: 10.1243/0954405021520409
Google Scholar
[4]
M. Dhananchezian, M.P. Kumar, and A. Rajadurai, Experimental Investigation of cryogenic cooling by liquid nitrogen in the orthogonal machining process. International Journal of Recent Trend in Engineering, Vol. 1 (5) (2009), pp.55-59.
Google Scholar
[5]
M. Dhananchezian, M. Pradeep Kumar and T. Sornakumar, Cryogenic Turning of AISI 304 Stainless Steel with Modified Tungsten Carbide Tool Inserts. Materials and Manufacturing Processes, Vol. 26 (2011), p.781–785.
DOI: 10.1080/10426911003720821
Google Scholar
[6]
K. Kalyankumar and S. Choudhury, Investigation of tool wear and cutting force in cryogenic machining using design of experiments. Journal of materials processing Technology, Vol. 203 (1-3) (2008), pp.95-101.
DOI: 10.1016/j.jmatprotec.2007.10.036
Google Scholar
[7]
M. Nalbant and Y. Yildiz, Effect of cryogenic cooling in milling process of AISI 304 Stainless steel. Transactions of Nonferrous metals society of china, Vol. 21 (1) (2011), pp.72-79.
DOI: 10.1016/s1003-6326(11)60680-8
Google Scholar
[8]
K. Uehara and S. Kumagai, Chip formation surface roughness and cutting force in cryogenic machining. Annals of CIRP, Vol. 17 (1) (1968), pp.409-416.
Google Scholar
[9]
S. Ravi. S and M.P. Kumar, Experimental Investigations on cryogenic cooling by liquid nitrogen in the end milling of hardened steel. Cryogenics, Vol. 51 (9) (2011), pp.509-515.
DOI: 10.1016/j.cryogenics.2011.06.006
Google Scholar
[10]
S. Ravi and M. Pradeep Kumar, Experimental Investigation of Cryogenic Cooling in Milling of AISI D3 Tool Steel. Materials and Manufacturing Processes, Vol. 27 (2012), p.1017–1021.
DOI: 10.1080/10426914.2011.654157
Google Scholar
[11]
N. Benfredj and H. Sidhom, Effects of the cryogenic cooling on the fatigue strength of the AISI 304 Stainless steel ground components. Cryogenics, Vol. 46 (6) (2006), pp.439-448.
DOI: 10.1016/j.cryogenics.2006.01.015
Google Scholar
[12]
B. Dilip Jerold and M. Pradeep Kumar, Machining of AISI 316 Stainless Steel under Carbon-Di-Oxide Cooling. Materials and Manufacturing Processes, Vol. 27 (2012), p.1059–1065.
DOI: 10.1080/10426914.2011.654153
Google Scholar
[13]
G. Manimaran and M. Pradeep Kumar, Multi-response Optimization of Grinding AISI 316 Stainless Steel Using Grey Relational Analysis. Materials and Manufacturing Processes, Vol. 28 (2013), p.418–423.
DOI: 10.1080/10426914.2012.709347
Google Scholar
[14]
G. Manimaran and M. Pradeep Kumar, Investigation of Cooling Environments in Grinding EN 31 Steels. Materials and Manufacturing Processes, Vol. 28 (2013), p.424–429.
DOI: 10.1080/10426914.2013.763957
Google Scholar
[15]
Rodrigo Panosso Zeilmann and Walter Lindol Fo Weingaertner, Analysis of temperature during drilling of Ti-6Al-4V with minimal quantity of lubricant. Journal of Materials Processing Technology, Vol. 179 (2006), pp.124-127.
DOI: 10.1016/j.jmatprotec.2006.03.077
Google Scholar