[1]
M. Tahani: Analysis of laminated composite beams using layerwise displacement theories. Composite Structures Vol. 79 (2007), p.535.
DOI: 10.1016/j.compstruct.2006.02.019
Google Scholar
[2]
H. Matsunaga: Interlaminar stress analysis of laminated composite and sandwich circular arches subjected to thermal/mechanical loading. Composite Structures Vol. 60 (2003), p.345.
DOI: 10.1016/s0263-8223(02)00340-9
Google Scholar
[3]
N.J. Pagano: Exact solutions for composite laminates in cylindrical bending. Journal of Composite Materials Vol. 3 (1969), p.398.
DOI: 10.1177/002199836900300304
Google Scholar
[4]
N.J. Salamon: Interlaminar stresses in a layered composite Laminate in bending. Fibre Science and Technology Vol. 11 (1978), p.305.
DOI: 10.1016/0015-0568(78)90020-9
Google Scholar
[5]
C. Kassapoglou: Determination of Interlaminar Stresses in Composite Laminates under Combined Loads. Journal of Reinforced Plastics and Composites Vol. 9 (1990), p.33.
DOI: 10.1177/073168449000900103
Google Scholar
[6]
C.Y. Lee and D. Liu: An interlaminar stress continuity theory for laminated composite analysis. Computers & Structures Vol. 42 (1992), p.69.
DOI: 10.1016/0045-7949(92)90537-a
Google Scholar
[7]
H. Matsunaga: Interlaminar stress analysis of laminated composite beams according to global higher-order deformation theories. Composite Structures Vol. 55 (2002), p.105.
DOI: 10.1016/s0263-8223(01)00134-9
Google Scholar
[8]
J. Oh and M. Cho: A finite element based on cubic zig-zag plate theory for the prediction of thermo-electric-mechanical behaviours. International Journal of Solids and Structures Vol. 41 (2004), p.1357.
DOI: 10.1016/j.ijsolstr.2003.10.019
Google Scholar
[9]
H. Wu and X. Yan: Interlaminar stress modeling of composite laminates with finite element method. Journal of Reinforced Plastics and Composites Vol. 24 (2005), p.130.
DOI: 10.1177/0731684405043553
Google Scholar
[10]
M. Aydogdu: Thermal buckling analysis of cross-ply laminated composite beams with general boundary conditions. Composites Science and Technology Vol. 7 (2007), p.1096.
DOI: 10.1016/j.compscitech.2006.05.021
Google Scholar
[11]
T.S. Plagianakos and D.A. Saravanos: Higher-order layerwise laminate theory for the prediction of interlaminar shear stresses in thick composite and sandwich composite plates. Composite Structures Vol. 87 (2009), p.23.
DOI: 10.1016/j.compstruct.2007.12.002
Google Scholar
[12]
P. Vidal and O. Polit: A refined sine-based finite element with transverse normal deformation for the analysis of laminated beams under thermo mechanical loads. Journal of Mechanics of Materials and Structures Vol. 4 (2009), p.1127.
DOI: 10.2140/jomms.2009.4.1127
Google Scholar
[13]
M. Shariyat: A generalized high-order global–local plate theory for nonlinear bending and buckling analyses of imperfect sandwich plates subjected to thermo-mechanical loads. Composite Structures Vol. 92 (2010), p.130.
DOI: 10.1016/j.compstruct.2009.07.007
Google Scholar
[14]
D. Gayen and T. Roy: Hygro-Thermal Effects on Stress Analysis of Tapered Laminated Composite Beam. International Journal of Composite Materials Vol. 3 (2013), p.46.
Google Scholar