[1]
Xiangzhong Jin, Lijun Li and Yi Zhang, A Heat transfer model for deep penetration laser welding based on an actual keyhole, International Journal of Heat and Mass Transfer, Vol. 46, (2003) p.15–22.
DOI: 10.1016/s0017-9310(02)00255-7
Google Scholar
[2]
Kamel Abderrazak, Sana Bannour, Hatem Mhiri, Georges Lepalec, Michel Autric, Numerical and experimental study of molten pool formation during continuous laser welding of AZ91 magnesium alloy, Journal of Computational Materials Science, Vol. 44, (2009).
DOI: 10.1016/j.commatsci.2008.06.002
Google Scholar
[3]
He, X., Fuerschbach, P W., DebRoy, T. Heat Transfer and Fluid Flow during Laser Spot Welding Of Stainless Steel 304, Journal Physics D: Applied Physics, Vol. 36, (2003) p.1388–1398.
DOI: 10.1088/0022-3727/36/12/306
Google Scholar
[4]
Balasubramanian, K.R., Sankaranarayanasamy, K., Buvanashekaran, G. Analysis of Laser welding parameters using artificial neural network, International Journal for the Joining of Materials, Vol. 18 No. 3/4, (2006), pp.99-104.
Google Scholar
[5]
Balasubramanian, K.R., Buvanashekaran, G., Sankaranarayanasamy, K., Modeling of laser beam welding of stainless steel sheet butt joint using neural networks, CIRP Journal of Manufacturing Science and Technology, Vol. 3, (2010) pp.80-84.
DOI: 10.1016/j.cirpj.2010.07.001
Google Scholar
[6]
Achin Mahrle., Jurgen Schmidt, The Influence of Fluid Flow Phenomena on the Laser Beam Welding Process', International Journal of heat and fluid flow, Vol. 23, (2002) pp.288-297.
DOI: 10.1016/s0142-727x(02)00176-5
Google Scholar
[7]
Hanbin, D., Lunji, H., Jianhua, L. and Xiyuan, H. A study on the metal flow in full penetration laser beam welding for titanium alloy, Computational Materials Science, Vol. 29, (2004) p.419–427.
DOI: 10.1016/j.commatsci.2003.11.002
Google Scholar
[8]
L. Han, F.W. Liou (2004) Numerical investigation of the influence of laser beam mode on melt pool, International Journal of Heat and mass Transfer, Vol . 47, pp.4385-4402.
DOI: 10.1016/j.ijheatmasstransfer.2004.04.036
Google Scholar
[9]
Fluent. Inc. Fluent 6. 2, (2003) User's guide.
Google Scholar
[10]
Chang W. S and Na S. J, A study on heat source equations for the prediction of weld shape and thermal deformation in laser microwelding, Metallurgical and Materials Transactions B, Vol. 33, (2001) pp.757-764.
DOI: 10.1007/s11663-002-0029-y
Google Scholar
[11]
Voller, V.R., Prakash, C, A fixed grid numerical modelling methodology for convection diffusion mushy region phase change problem', International Journal of Heat and Mass Transfer, Vol. 30, (1987) p.1709–1719.
DOI: 10.1016/0017-9310(87)90317-6
Google Scholar
[12]
Chakraborty, S., Dutta, P. A generalized formula for evaluation of latent heat function in enthalpy based macroscopic model for convection diffusion phase change process, Metallurgical and Materials Transactions B, Vol. 32, (2001) p.562–564.
DOI: 10.1007/s11663-001-0042-6
Google Scholar
[13]
Voller, V.R., Swaminathan, C.R. General source based method for solidification phase change, Numerical Heat Transfer Part B, Vol. 19, (1991) p.175–189.
DOI: 10.1080/10407799108944962
Google Scholar
[14]
Mazumder, J., Steen, W. M, Heat transfer model for CW laser material processing', Journal of Applied Physics, Vol. 51, No. 2, (1980) p.941–947.
DOI: 10.1063/1.327672
Google Scholar
[15]
Yang, L.X., Peng, X.F., Wang B.X., Numerical modeling and experimental investigation on the characteristics of molten pool during laser processing, International Journal of Heat and Mass Transfer, Vol. 44, (2001) pp.4465-4473.
DOI: 10.1016/s0017-9310(01)00086-2
Google Scholar
[16]
Rai, R., Elmer, J W., Palmer, T A., Debroy, T., Heat Transfer Fluid Flow during Keyhole Laser Welding of Tantalum, Ti-6Al-4V, 304L Stainless Steel and Vanadium', Journal Physics D: Applied Physics, Vol. 40, (2007) pp.5753-5766.
DOI: 10.1088/0022-3727/40/18/037
Google Scholar
[17]
Farzadi A., Serajzadeh, S., Kokabi A. H., Modeling of heat transfer and fluid flow during gas tungsten arc welding of commercial pure aluminum', International Journal of Advanced Manufacturing Technology, Vol. 38 (2008) p.258–267.
DOI: 10.1007/s00170-007-1106-9
Google Scholar