[1]
Tan, K.H., Chua, C.K., Leong, K.F. and Cheah, C. M, Scaffold development using selective laser sintering polyetheretherketone-hydroxyapatite biocomposite blends, Biomaterials, Vol. 26 (2005), P. 4281.
DOI: 10.1016/s0142-9612(03)00131-5
Google Scholar
[2]
Mikos A.G., Georgious Sarakinos, Michelle.D. Lyman, Donald E. Ingber, Jeseph.P. Vacanti and Robert Langer, Prevascularization of porous biodegradable polymers, Biotechnology and Bioeng Vol. 42, No. 6 (1993), P. 716.
DOI: 10.1002/bit.260420606
Google Scholar
[3]
Bruder, S. P, The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defect, J Bone Joint Surg Am , Vol. 80 No. 7 (1998), P. 985.
DOI: 10.2106/00004623-199807000-00007
Google Scholar
[4]
Linbo,W. and Jiandong, D, Compression Molding of Porous Scaffolds with complicated shape for Tissue Engineering, Polymer Material Science and Engineering, Vol. 25 No. 1. (2005), P. 296.
Google Scholar
[5]
Deville, S., Saiz, E., Tomsia, A. P, Freeze casting of hydroxyapatite scaffolds for bone tissue Engineering, Biomaterials, Vol. 27 (2006), P. 5480.
DOI: 10.1016/j.biomaterials.2006.06.028
Google Scholar
[6]
Madihally, S.V. and Howard, W. T, Porous chitosan Scaffolds for tissue engineering, Biomaterials, Vol. 20 (1999),P. 1133–42.
DOI: 10.1016/s0142-9612(99)00011-3
Google Scholar
[7]
Junmin, Q., Kai.C., Hao A. and Zhihao, J, Progress in research of preparation technologies of porous ceramics, Ordnance Material Science and Engineering , Vol. 28 No. 5 (2005), p.60.
Google Scholar
[8]
S.M. Giannitelli , D. Accoto , M. Trombetta , A. Rainer, Current trends in the design of scaffolds for computer-aided tissue engineering, Acta Biomaterialia Vol. 10 (2014), P. 580.
DOI: 10.1016/j.actbio.2013.10.024
Google Scholar
[9]
Stefan Lohfeld , Senan Cahill , Valerie Barron , Peter McHugh , Lutz Dürselen , Ludwika Kreja , Christine Bausewein , Anita Ignatius, Fabrication, mechanical and in vivo performance of polycaprolactone/tricalcium phosphate composite scaffolds, Acta Biomaterialia Vol. 8 (2012).
DOI: 10.1016/j.actbio.2012.05.018
Google Scholar
[10]
Shaun Eshraghi, Suman Das, Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering, Acta Biomaterialia Vol. 6 (2010).
DOI: 10.1016/j.actbio.2010.02.002
Google Scholar
[11]
Qin Lian, Di-Chen Li, Yi-Ping Tang, Yong-Rui Zhang, Computer modeling approach for a novel internal architecture of artificial bone, Computer Aided Design (2006).
DOI: 10.1016/j.cad.2005.12.001
Google Scholar
[12]
M. Sugavaneswaran , G. Arumaikkannu, Modelling for randomly oriented multi material additive manufacturing component and its fabrication, Materials and Design Vol. 54 (2014), P. 779.
DOI: 10.1016/j.matdes.2013.08.102
Google Scholar
[13]
R.D. Goodridge, C.J. Tuck, R.J.M. Hague, Laser sintering of polyamides and other polymers, Progress in Materials Science Vol. 57 (2012), P. 229.
DOI: 10.1016/j.pmatsci.2011.04.001
Google Scholar
[14]
B. Caulfield, P.E. McHugh, S. Lohfeld, Dependence of mechanical properties of polyamide components on build parameters in the SLS process, Journal of Materials Processing Technology Vol. 182 (2007), P. 477–488.
DOI: 10.1016/j.jmatprotec.2006.09.007
Google Scholar
[15]
Tancred, D.C., McCormack, B.A. O, A synthetic bone implant macroscopically identical to cancellous bone, Biomaterials, Vol. 19 (1998), P. 2303.
DOI: 10.1016/s0142-9612(98)00141-0
Google Scholar
[16]
Atwood, R.C., Jones, J.R., Lee, P. D, Analysis of pore interconnectivity in bioactive glass foams using X-ray microtomography, Scripta Materialia, Vol. 51(2004), P. 1029.
DOI: 10.1016/j.scriptamat.2004.08.014
Google Scholar