[1]
R.S. Vajjha, D.K. Das and D.P. Kulkarni: Development of new correlations for convective heat transfer and friction factor in turbulent regime for nanofluids, Int. J. Heat Mass. Transf Vol. 53 (2010), pp.4607-4618.
DOI: 10.1016/j.ijheatmasstransfer.2010.06.032
Google Scholar
[2]
S.W. Lee, S.D. Park, S. Kang, I.C. Banga and J.H. Kim: Investigation of viscosity and thermal conductivity of SiC nanofluids for heat transfer applications, Int. J. Heat Mass. Transf Vol. 54 ( 2011), pp.433-438.
DOI: 10.1016/j.ijheatmasstransfer.2010.09.026
Google Scholar
[3]
D. Madhesh and S. Kalaiselvam: Preparation and characterization of MWCNT – Water nanofluids for heat transfer applications, Int. J. Adv. Mech Eng. Vol. 4, (2014) pp.193-198.
Google Scholar
[4]
Y. Hwang, J-K. Lee, Y-M. Jeong, S-ir. Cheong, Y-C. Ahn and S.H. Kim: Production and dispersion stability of nanoparticles in nanofluids, Powder. Tech Vol. 186, (2008), pp.145-153.
DOI: 10.1016/j.powtec.2007.11.020
Google Scholar
[5]
S.M.S. Murshed, K.C. Leong and C. Yang: Enhanced thermal conductivity of TiO2-water based nanofluids, Int. J. Therm. Sci Vol. 44, (2005), pp.367-373.
DOI: 10.1016/j.ijthermalsci.2004.12.005
Google Scholar
[6]
D. Madhesh, R. Parameshwaran and S. Kalaiselvam: Experimental investigation on convective heat transfer and rheological characteristics of Cu–TiO2 hybrid nanofluids, Exp. Thermal . Fluid. Sci Vol. 52, (2014), p.104–115.
DOI: 10.1016/j.expthermflusci.2013.08.026
Google Scholar
[7]
Y. Xuan and Q. Li: Heat transfer enhancement of nanofluids, Int. J. Heat Fluid. Flow Vol. 21, (2000), pp.58-64.
DOI: 10.1016/s0142-727x(99)00067-3
Google Scholar
[8]
D. Madhesh and S. Kalaiselvam: Experimental study on the heat transfer and flow properties of Ag–ethylene glycol nanofluid as a coolant, Heat. Mass. Transf, DOI 10. 1007/s00231-014-1370-9.
DOI: 10.1007/s00231-014-1370-9
Google Scholar
[9]
H. Zhu, C. Zhang, S. Liu, Y. Tang and Y. Yin, Effects of nanoparticle clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids, Appl. Phys . Lett, Vol. 89, (2006), p.023123.
DOI: 10.1063/1.2221905
Google Scholar
[10]
R. Prasher, W. Evans, P. Meakin, J. Fish and P. Phelan, Effect of aggregation on thermal conduction in colloidal nanofluids, Appl. Phys. Lett, Vol. 89, (2006), p.143119.
DOI: 10.1063/1.2360229
Google Scholar
[11]
A. Gupta and R. Kumar: Role of Brownian motion on the thermal conductivity enhancement of Nanofluids, Appl. Phys. Lett, Vol. 91, (2007), p.223102.
DOI: 10.1063/1.2816903
Google Scholar
[12]
S.P. Jang and S.U.S. Choi, Role of Brownian motion in the enhanced thermal conductivity of nanofluids, Appl. Phys. Lett Vol. 84, (2004), p.4316.
DOI: 10.1063/1.1756684
Google Scholar