[1]
Cho, Y. H., Kim, J. K., & Kim, S. H. (2002). A personalized recommender system based on web usage mining and decision tree induction. Expert Systems with Applications, 23(3), 329-342.
DOI: 10.1016/s0957-4174(02)00052-0
Google Scholar
[2]
Tsaur, S. H., Chang, T. Y., & Yen, C. H. (2002). The evaluation of airline service quality by fuzzy MCDM. Tourism management, 23(2), 107-115.
DOI: 10.1016/s0261-5177(01)00050-4
Google Scholar
[3]
Opricovic, S., & Tzeng, G. H. (2007). Extended VIKOR method in comparison with outranking methods. European Journal of Operational Research, 178(2), 514-529.
DOI: 10.1016/j.ejor.2006.01.020
Google Scholar
[4]
San Cristóbal, J. R. (2011). Multi-criteria decision-making in the selection of a renewable energy project in Spain: the Vikor method. Renewable energy, 36(2), 498-502.
DOI: 10.1016/j.renene.2010.07.031
Google Scholar
[5]
Opricovic, S. (2011). Fuzzy VIKOR with an application to water resources planning. Expert Systems with Applications, 38(10), 12983-12990.
DOI: 10.1016/j.eswa.2011.04.097
Google Scholar
[6]
Opricovic, S., & Tzeng, G. H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research, 156(2), 445-455.
DOI: 10.1016/s0377-2217(03)00020-1
Google Scholar
[7]
Herrera, F., & Martinez, L. (2000).
Google Scholar
[8]
Herrera, F. (2012). An overview on the 2-tuple linguistic model for computing with words in decision making: Extensions, applications and challenges. Information Sciences, 207, 1-18.
DOI: 10.1016/j.ins.2012.04.025
Google Scholar
[9]
Forney Jr, G. (1966). Generalized minimum distance decoding. Information Theory, IEEE Transactions on, 12(2), 125-131.
DOI: 10.1109/tit.1966.1053873
Google Scholar
[10]
Karsak, E. E. (2002). Distance-based fuzzy MCDM approach for evaluating flexible manufacturing system alternatives. International Journal of Production Research, 40(13), 3167-3181.
DOI: 10.1080/00207540210146062
Google Scholar
[12]
Sánchez, L., Couso, I., & Casillas, J. (2007, April). Modeling vague data with genetic fuzzy systems under a combination of crisp and imprecise criteria. In Computational Intelligence in Multicriteria Decision Making, IEEE Symposium on (pp.30-37.
DOI: 10.1109/mcdm.2007.369413
Google Scholar