The Pyrolysis Behavior of Alkali Lignin Oxygenized by Hydrogen Peroxide in Ionic Liquid 1-Butyl-3-Methylimidazolium Chloride ([BMIm]Cl)

Article Preview

Abstract:

In order to make better use of lignin, a mixed solution with isopyknic hydrogen peroxide 30% aqueous solution and an ionic liquid 1-butyl-3-methylimidazolium chloride ([BMIm]Cl) was used to oxygenize alkali lignin from black liquor. The pyrolysis behavior of the treated alkali lignin (Regenerated ALG) was investigated via TGA. The kinetic controlling temperature range of the Regenerated ALG pyrolysis is between 533K and 649K approved by TG/DTG/DTA data, and the dominated pyrolysis is occurred below 574.7K, which was calculated from a kinetics model using Coats-Redfern method with a first order pyrolysis reaction. The activation energy of the Regenerated ALG also reached up to 105.675kJ/mol, which is 2.2 times greater than the non-treated one.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

86-89

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. B. Davin, M. Jourdes, A. M. Patten, K. -W. Kim, D. G. Vassao and N. G. Lewis: Nat. Prod. Rep. Vol. 25 (2008), p.1015–1090.

Google Scholar

[2] P. de Wild, H. Reith and E. Heeres: Biofuels Vol. 2 (2011), p.185–208.

Google Scholar

[3] D. J. Nowakowski, A. V. Bridgwater, D. C. Elliott, D. Meier and P. deWild: J. Anal. Appl. Pyrolysis Vol. 88 (2010), p.53–72.

Google Scholar

[4] P. J. de Wild, W. J. J. Huijgen and H. J. Heeres, J. Anal. Appl. Pyrolysis Vol. 93 (2012), p.95–103.

Google Scholar

[5] M. M. Hossain and L. Aldous, Aust. J. Chem. Vol. 65 (2012), p.1465–1477.

Google Scholar

[6] S. S. Y. Tan and D. R. MacFarlane, in: B. Kirchner (Ed. ), Ionic liquids, volume 290 of Topics in Current Chemistry, Springer Berlin Heidelberg, (2010), p.311–339.

Google Scholar

[7] I. Kilpeläinen, H. Xie, A. King, M. Granstrom, S. Heikkinen and D. S. Argyropoulos, J. Agric. Food. Chem. Vol. 55 (2007), p.9142–9148.

DOI: 10.1021/jf071692e

Google Scholar

[8] M. Mora-Pale, L. Meli, T. V. Doherty, R. J. Linhardt and J. S. Dordick, Biotechnol. Bioeng. Vol. 108 (2011), p.1229–1245.

DOI: 10.1002/bit.23108

Google Scholar

[9] M. Smiglak, J. D. Holbrey, S. T. Griffin,W. M. Reichert, R. P. Swatloski, A. R. Katritzky, H. Yang, D. Zhang, K. Kirichenko and R. D. Rogers, Green Chem. Vol. 9 (2007), p.90–98.

DOI: 10.1039/b610421e

Google Scholar

[10] G. Jiang, D. J. Nowakowski and A. V. Bridgwater, Thermochim. Acta Vol. 498 (2010), p.61–66.

Google Scholar