A New Numerical Scheme for the Space Fractional Diffusion Equation

Article Preview

Abstract:

We construct the numerical method of the space fractional diffusion equation in this paper. We propose an efficient method for its numerical solution. This method is based on a finite difference in time and finite element method in space. Convergence of the method is rigorously established. A series of numerical examples are provided to support the theoretical claims.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1305-1308

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Diethelm, N.J. Ford, Numerical solution of the bagley-torvik equation, BIT, 42(2002)490-507.

DOI: 10.1023/a:1021973025166

Google Scholar

[2] I. Podlubny. Fractional Differential Equations. Academic Press, (1999).

Google Scholar

[3] Gao G, Sun Z, Zhang H, A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications, J. Comput. Phys., 259(2014)33-50.

DOI: 10.1016/j.jcp.2013.11.017

Google Scholar

[4] J. Y. Cao, C. J. Xu, A high order schema for the numerical solution of the fractional ordinary differential equations, J. Comput. Phys., 238(2013)154-168.

DOI: 10.1016/j.jcp.2012.12.013

Google Scholar

[5] E. Sousa, Finite difference approximations for a fractional advection diffusion problem, J. Comput. Phys., 228(2009)4038-4054.

DOI: 10.1016/j.jcp.2009.02.011

Google Scholar

[6] W. H. Deng, Finite element method for the space and time fractional fokker-planck equation, SIAM J. Numer. Anal., 47(2008)204-226.

DOI: 10.1137/080714130

Google Scholar

[7] X. J. Li, C. J. Xu, A Space-Time Spectral Method for the Time Fractional Diffusion Equation, SIAM J. Numer. Anal., 47(2009)2108-2131.

DOI: 10.1137/080718942

Google Scholar

[8] J. Y. Cao, C. J. Xu, Z. Q. Wang, A High Order Finite Difference/Spectral Approximations to the Time Fractional Diffusion Equations, Advanced Materials Research, 875(2014)781-785.

DOI: 10.4028/www.scientific.net/amr.875-877.781

Google Scholar

[9] K. Diethelm, N.J. Ford, and A.D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynam., 29(2002)3-22.

Google Scholar