[1]
K. Diethelm, N.J. Ford, Numerical solution of the bagley-torvik equation, BIT, 42(2002)490-507.
DOI: 10.1023/a:1021973025166
Google Scholar
[2]
I. Podlubny. Fractional Differential Equations. Academic Press, (1999).
Google Scholar
[3]
Gao G, Sun Z, Zhang H, A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications, J. Comput. Phys., 259(2014)33-50.
DOI: 10.1016/j.jcp.2013.11.017
Google Scholar
[4]
J. Y. Cao, C. J. Xu, A high order schema for the numerical solution of the fractional ordinary differential equations, J. Comput. Phys., 238(2013)154-168.
DOI: 10.1016/j.jcp.2012.12.013
Google Scholar
[5]
E. Sousa, Finite difference approximations for a fractional advection diffusion problem, J. Comput. Phys., 228(2009)4038-4054.
DOI: 10.1016/j.jcp.2009.02.011
Google Scholar
[6]
W. H. Deng, Finite element method for the space and time fractional fokker-planck equation, SIAM J. Numer. Anal., 47(2008)204-226.
DOI: 10.1137/080714130
Google Scholar
[7]
X. J. Li, C. J. Xu, A Space-Time Spectral Method for the Time Fractional Diffusion Equation, SIAM J. Numer. Anal., 47(2009)2108-2131.
DOI: 10.1137/080718942
Google Scholar
[8]
J. Y. Cao, C. J. Xu, Z. Q. Wang, A High Order Finite Difference/Spectral Approximations to the Time Fractional Diffusion Equations, Advanced Materials Research, 875(2014)781-785.
DOI: 10.4028/www.scientific.net/amr.875-877.781
Google Scholar
[9]
K. Diethelm, N.J. Ford, and A.D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynam., 29(2002)3-22.
Google Scholar