[1]
M. Bertalmío, A. Bertozzi, G. Sapiro, Navier Stokes, fluid-dynamics and image and video inpainting, in: Proc. 2001 IEEE Comput. Soc. Conf. Comput. Vision Pattern Recognion., vol. 1. n. 1, p.355–362, (2001).
DOI: 10.1109/cvpr.2001.990497
Google Scholar
[2]
M. Bertalmío, G. Sapiro, V. Caselles, C. Ballester, Image inpainting, SIGGRAPH 34 (2000) 417–424.
Google Scholar
[3]
M. Bertalmío, L. Vese, G. Sapiro, S. Osher, Simultaneous structure and texture image inpainting, IEEE Trans. Image Process. Vol. 12, n. 6 p.882–889, (2003).
DOI: 10.1109/tip.2003.815261
Google Scholar
[4]
M. Elad, J. -L. Starck, P. Querre and D. Donoho, Simultaneous cartoon and texture image inpainting using morphological component analysis, Appl. Comput. Harmon. Anal. Vol. 19, n. 3, p.340–358, (2005).
DOI: 10.1016/j.acha.2005.03.005
Google Scholar
[5]
AN Tikhonov and VA Arsenin. Solution of Ill-posed Problems. (Winston & Sons, Washington, 1977).
Google Scholar
[6]
Tony F. Chan and Jianhong Shen. Image processing and analysis: Variational, PDE, wavelet, and stochastic.
Google Scholar
[7]
methods. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, (2005).
Google Scholar
[8]
Leonid Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based noise removal algorithms. Physica D , (1992).
DOI: 10.1016/0167-2789(92)90242-f
Google Scholar
[9]
David Mumford and Jayant Shah. Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math., vol. 42, n. 5, pp.577-685, (1989).
DOI: 10.1002/cpa.3160420503
Google Scholar
[10]
A. Criminisi, P. Perez, and K. Toyama. Region Flling and object removal by exemplar-based image inpainting. IEEE Tran. on Image Processing, vol. 13, n. 9, pp.1200-1212, (2004).
DOI: 10.1109/tip.2004.833105
Google Scholar
[11]
Meyer Y.Oscillating Patterns in Image Processing and Nonlinear Evolution Equations.Boston University Lecture Series,American M athematical Society,2001.
Google Scholar
[12]
Myungjoo Kang and Myeongmin Kang. Compressive Sensing and Applications Asia Pacific Mathematics Newsletter vol. 2, n. 2, pp.1-5, (2012).
Google Scholar
[13]
Zuowei Shen, Kim-Chuan Toh, and Sangwoon Yun. An accelerated proximal gradient algorithm for image restoration. preprint, (2009).
Google Scholar
[14]
Stanley Osher, Martin Burger, Donald Goldfarb, Jinjun Xu, and Wotao Yin. An iterative regularization method for total variation-based image restoration. SIAM Multiscale Model. Simul., vol. 4, n. 5, pp.460-489, (2005).
DOI: 10.1137/040605412
Google Scholar
[15]
Jian-Feng Cai, Stanley Osher, and Zuowei Shen. Split bregman methods and frame based image restoration. Multiscale Model. Simul., vol. 8, n. 14, pp.5057-5071, (2009).
DOI: 10.1137/090753504
Google Scholar
[16]
Tom Goldstein and Stanley Osher. The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci., vol. 2, n. 2, pp.323-343, (2009).
DOI: 10.1137/080725891
Google Scholar
[17]
Luminita A. Vese and Stanley J. Osher Modeling Textures with Total Variation Minimization and Oscillating Patterns in Image Processing, [J] Journal of Scientific computing , 2003 , 19(1), 553-572.
Google Scholar
[18]
Y Meyer Oscillating patterns in image processing and nolinear evolution equations [D] AMS university Lecture Series. (2002).
Google Scholar
[19]
Chan T F, Shen J H non-texture inpainting by curature-driven diffusions, [J] Journal of Vision communication and Image Representation, 2001, 12(4): 436-449.
DOI: 10.1006/jvci.2001.0487
Google Scholar
[20]
Harsh Potlapalli and Ren C. Luo fractal-based classification of natural textures, IEEE transanctions on industrial electronics, vol. 45. NO. 1 (1998).
DOI: 10.1109/41.661315
Google Scholar
[21]
A Cisi, P Perez, K Toyama. Object Removal by Exemplar-based inpainting[C]. Proceedings of Euro, Graph, (2003).
Google Scholar
[22]
L. Rudin,S. Osher and E. Fatemi, Nonliner total vartion based noise removal algorithm, physica D., vol. 60, pp.259-268, (1992).
DOI: 10.1016/0167-2789(92)90242-f
Google Scholar
[23]
A. Chambolle and P. L. Lions, Image recovery via Total Variational minimization and related problems, Numer. Math. 76, 1997, 167–188.
DOI: 10.1007/s002110050258
Google Scholar
[24]
T. Chan and J. Shen, Local inpainting models and TV inpainting, SIAM J. Appl. Math. 62: 3, pp.1019-1043, (2001).
Google Scholar