[1]
T. Broid, R. Chellappa: Estimation of Object Motion Parameters from Noisy Images, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 90-99 (1986), p.1.
DOI: 10.1109/tpami.1986.4767755
Google Scholar
[2]
D. Beymer, K. Konolige: Real-Time Tracking of Multiple People Using Continuous Detection, In: IEEE Frame Rate Workshop (1999).
Google Scholar
[3]
S. Schlosserm, K. Kroschel: Limits in tracking with extended Kalman filters, IEEE Transactions on Aerospace and Electronic Systems, (2004).
Google Scholar
[4]
T. Perala, R. Piche: Robust Extended Kalman Filtering in Hybrid Positioning Applications, In: WPNC. 07: 4th Workshop on Positioning, Navigation and Communication, Hannover, Germany, (2007).
DOI: 10.1109/wpnc.2007.353613
Google Scholar
[5]
L.N. Pan: Multi-Sensor Target Tracking Based on Extend Kalman Filter, Ship Electronic Engineering, Vol. 71-72(2010), p.12.
Google Scholar
[6]
B.Q. Yu: Multi-robot Cooperative Localization Based on Extended Kalman Filter, Dalian University of Technology (2007).
Google Scholar
[7]
Information on www. cs. unc, end/~welch/kalman/media/pdf.
Google Scholar
[8]
N. Metropolis, S. Ulam: The Monte Carlo Method, American Statistical Association, Vol. 335-341 (1949), p.44.
DOI: 10.1080/01621459.1949.10483310
Google Scholar
[9]
R. Merwe, A. Doucet, N. Freitas E. Wan:The Unscented Particle Filter, Technical Report, Cambridge University Engineering department(2000).
Google Scholar
[10]
X. Wang, J.F. Chen, Z.G. Shi, K.S. Chen: Fuzzy-Control-Based Particle Filter for Maneuvering Target Tracking, Progress in Electromagnetics Research, Vol. 1-15 (2011), p.118.
DOI: 10.2528/pier11051907
Google Scholar
[11]
S.J. Julier, J.K. Uhlmann: Unscented Filtering and Nonlinear Estimation, Proceedings of the IEEE, Vol. 401-422(2004), p.92.
DOI: 10.1109/jproc.2003.823141
Google Scholar
[12]
N. Bouaynaya, D. Schonfeld: On the Optimality of Motion-Based Particle Filtering, IEEE Trans. Circ. and Syst. for Vid. Tech., (2009).
Google Scholar
[13]
F. Zhang, X.P. Zhou, X.H. Chen: Interacting Multiple Model Tracking Algorithm of Multiple Maneuvering Targets Based on Particle Filter, Dat. Acqui. & Process, Vol. 1-7(2011), p.26.
Google Scholar
[14]
E. Maggio, F. Smeraldi, A. Cavallaro: Combining Color and Orientation for Adaptive Particle Filter–based Tracking, BMVC( 2005).
DOI: 10.5244/c.19.79
Google Scholar
[15]
E. Wang, J. Silva, L. Carin: Compressive Particle Filtering for Target Tracking, IEEE Statistical Sign. Process, (2009).
DOI: 10.1109/ssp.2009.5278595
Google Scholar
[16]
Y. Xia, X.J. Wu: Ball Particle Filter Video Tracking Algorithm, Pattern Recognition and Artificial Intelligence, Vol. 513-520(2012), p.25.
Google Scholar
[17]
F. Campillo, V. Rossi: Convolution Particle Filter for Parameter Estimation in General State-Space Models, IEEE Trans. Aerospace and Electronic Syst. (2009).
DOI: 10.1109/taes.2009.5259183
Google Scholar
[18]
K. Fukunaga, L. Hostetler: The Estimation of the Gradient of A Density Function, with Applications in Pattern Recognition, IEEE Transactions on Information Theory (1975).
DOI: 10.1109/tit.1975.1055330
Google Scholar
[19]
D. Comaniciu, P. Meer: Mean Shift: A Robust Approach toward Feature Space Analysis, IEEE Trans. Pattern Anal. Mach. Intel., Vol. 603-619 (2002), p.24.
DOI: 10.1109/34.1000236
Google Scholar
[20]
D. Comaniciu, V. Ramesh, and P. Meer: Kernel-Based Object Tracking, IEEE Trans. Pattern Anal. Mach. Intell., (2003).
DOI: 10.1109/tpami.2003.1195991
Google Scholar
[21]
A. Yilmaz: Kernel-Based Object Tracking Using Asymmetric Kernels with Adaptive Scale And Orientation, Machine Vision and Applications, Vol. 255-268 (2011), p.22.
DOI: 10.1007/s00138-009-0237-4
Google Scholar
[22]
K. Quast, A. Kaup: Scale Shape Adaptive Mean Shift Object Tracking in Video Sequences, European Signal Processing Conference, Glasgow, Scotland (2009).
Google Scholar
[23]
V. Vilaplana, F. Marques: Region-Based Mean Shift Tracking: Application to Face Tracking, International Conference on Image Processing, (2008).
DOI: 10.1109/icip.2008.4712354
Google Scholar
[24]
Z.H. Khan, I.Y. Gu, A. G. Backhouse: A Robust Particle Filter-Based Method for Tracking Single Visual Object Through Complex Scenes Using Dynamical Object Shape and Appearance Similarity, Sign. Process Syst., Vol. 63–79 (2011), p.65.
DOI: 10.1007/s11265-010-0539-9
Google Scholar
[25]
N. Xia, T.S. Qiu, J.C. Li, S.F. Li: A Nonlinear Filtering Algorithm Combining the Kalman Filter and the Particle Filter, Acta Electronica Sinica, Vol. 1-5(2013), p.41.
Google Scholar