A Survey on Moving Target Tracking in the Intelligent Visual Monitoring System

Article Preview

Abstract:

Moving target tracking is the key part of intelligent visual surveillance system. Among the various tracking algorithms, the Beysian tracking algorithms and the kernel tracking algorithm are two algorithms that frequently used. The Beysian tracking algorithms mainly conclude Kalman filtering algorithm, extended Kalman filtering algorithm and particle filtering algorithm. Mean Shift is the most representative algorithm of the kernel target tracking. In this survey, the status and development of target tracking algorithms has been studied more extensively with providing a few examples of modified tracking algorithms. Then a comparison was presented based on the limitations and scope of applications. Finally, the paper showed further research prospects of moving target tracking are introduced.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

790-793

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Broid, R. Chellappa: Estimation of Object Motion Parameters from Noisy Images, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 90-99 (1986), p.1.

DOI: 10.1109/tpami.1986.4767755

Google Scholar

[2] D. Beymer, K. Konolige: Real-Time Tracking of Multiple People Using Continuous Detection, In: IEEE Frame Rate Workshop (1999).

Google Scholar

[3] S. Schlosserm, K. Kroschel: Limits in tracking with extended Kalman filters, IEEE Transactions on Aerospace and Electronic Systems, (2004).

Google Scholar

[4] T. Perala, R. Piche: Robust Extended Kalman Filtering in Hybrid Positioning Applications, In: WPNC. 07: 4th Workshop on Positioning, Navigation and Communication, Hannover, Germany, (2007).

DOI: 10.1109/wpnc.2007.353613

Google Scholar

[5] L.N. Pan: Multi-Sensor Target Tracking Based on Extend Kalman Filter, Ship Electronic Engineering, Vol. 71-72(2010), p.12.

Google Scholar

[6] B.Q. Yu: Multi-robot Cooperative Localization Based on Extended Kalman Filter, Dalian University of Technology (2007).

Google Scholar

[7] Information on www. cs. unc, end/~welch/kalman/media/pdf.

Google Scholar

[8] N. Metropolis, S. Ulam: The Monte Carlo Method, American Statistical Association, Vol. 335-341 (1949), p.44.

DOI: 10.1080/01621459.1949.10483310

Google Scholar

[9] R. Merwe, A. Doucet, N. Freitas E. Wan:The Unscented Particle Filter, Technical Report, Cambridge University Engineering department(2000).

Google Scholar

[10] X. Wang, J.F. Chen, Z.G. Shi, K.S. Chen: Fuzzy-Control-Based Particle Filter for Maneuvering Target Tracking, Progress in Electromagnetics Research, Vol. 1-15 (2011), p.118.

DOI: 10.2528/pier11051907

Google Scholar

[11] S.J. Julier, J.K. Uhlmann: Unscented Filtering and Nonlinear Estimation, Proceedings of the IEEE, Vol. 401-422(2004), p.92.

DOI: 10.1109/jproc.2003.823141

Google Scholar

[12] N. Bouaynaya, D. Schonfeld: On the Optimality of Motion-Based Particle Filtering, IEEE Trans. Circ. and Syst. for Vid. Tech., (2009).

Google Scholar

[13] F. Zhang, X.P. Zhou, X.H. Chen: Interacting Multiple Model Tracking Algorithm of Multiple Maneuvering Targets Based on Particle Filter, Dat. Acqui. & Process, Vol. 1-7(2011), p.26.

Google Scholar

[14] E. Maggio, F. Smeraldi, A. Cavallaro: Combining Color and Orientation for Adaptive Particle Filter–based Tracking, BMVC( 2005).

DOI: 10.5244/c.19.79

Google Scholar

[15] E. Wang, J. Silva, L. Carin: Compressive Particle Filtering for Target Tracking, IEEE Statistical Sign. Process, (2009).

DOI: 10.1109/ssp.2009.5278595

Google Scholar

[16] Y. Xia, X.J. Wu: Ball Particle Filter Video Tracking Algorithm, Pattern Recognition and Artificial Intelligence, Vol. 513-520(2012), p.25.

Google Scholar

[17] F. Campillo, V. Rossi: Convolution Particle Filter for Parameter Estimation in General State-Space Models, IEEE Trans. Aerospace and Electronic Syst. (2009).

DOI: 10.1109/taes.2009.5259183

Google Scholar

[18] K. Fukunaga, L. Hostetler: The Estimation of the Gradient of A Density Function, with Applications in Pattern Recognition, IEEE Transactions on Information Theory (1975).

DOI: 10.1109/tit.1975.1055330

Google Scholar

[19] D. Comaniciu, P. Meer: Mean Shift: A Robust Approach toward Feature Space Analysis, IEEE Trans. Pattern Anal. Mach. Intel., Vol. 603-619 (2002), p.24.

DOI: 10.1109/34.1000236

Google Scholar

[20] D. Comaniciu, V. Ramesh, and P. Meer: Kernel-Based Object Tracking, IEEE Trans. Pattern Anal. Mach. Intell., (2003).

DOI: 10.1109/tpami.2003.1195991

Google Scholar

[21] A. Yilmaz: Kernel-Based Object Tracking Using Asymmetric Kernels with Adaptive Scale And Orientation, Machine Vision and Applications, Vol. 255-268 (2011), p.22.

DOI: 10.1007/s00138-009-0237-4

Google Scholar

[22] K. Quast, A. Kaup: Scale Shape Adaptive Mean Shift Object Tracking in Video Sequences, European Signal Processing Conference, Glasgow, Scotland (2009).

Google Scholar

[23] V. Vilaplana, F. Marques: Region-Based Mean Shift Tracking: Application to Face Tracking, International Conference on Image Processing, (2008).

DOI: 10.1109/icip.2008.4712354

Google Scholar

[24] Z.H. Khan, I.Y. Gu, A. G. Backhouse: A Robust Particle Filter-Based Method for Tracking Single Visual Object Through Complex Scenes Using Dynamical Object Shape and Appearance Similarity, Sign. Process Syst., Vol. 63–79 (2011), p.65.

DOI: 10.1007/s11265-010-0539-9

Google Scholar

[25] N. Xia, T.S. Qiu, J.C. Li, S.F. Li: A Nonlinear Filtering Algorithm Combining the Kalman Filter and the Particle Filter, Acta Electronica Sinica, Vol. 1-5(2013), p.41.

Google Scholar