[1]
Wu, S. X. and Banzhaf, W. The use of computational intelligence in intrusion detection systems: A review. Applied Soft Computing, vol. 10, pp.1-35, no. 1, (2010).
DOI: 10.1016/j.asoc.2009.06.019
Google Scholar
[2]
Fadlullah, Z. M., Nishiyama, H., Kato, N. and Fouda, M. M. Intrusion Detection System (IDS) for Combating Attacks Against Cognitive Radio Networks. Ieee Network, vol. 27, pp.51-56, no. 3, (2013).
DOI: 10.1109/mnet.2013.6523809
Google Scholar
[3]
Candes, E. J. and Wakin, M. B. An introduction to compressive sampling. Ieee Signal Processing Magazine, vol. 25, pp.21-30, no. 2, (2008).
DOI: 10.1109/msp.2007.914731
Google Scholar
[4]
Candes, E. J., Eldar, Y. C., Needell, D. and Randall, P. Compressed sensing with coherent and redundant dictionaries. Applied and Computational Harmonic Analysis, vol. 31, pp.59-73, no. 1, (2011).
DOI: 10.1016/j.acha.2010.10.002
Google Scholar
[5]
Shanxiong, C., Hailing, X., Xihua, P. and Sheng, W. Intrusion detection based on compressed sensing. ICIC Express Letters, vol. 7, p.8, no. 11, (2013).
Google Scholar
[6]
Yi, Y., Wu, J. S. and Xu, W. Incremental SVM based on reserved set for network intrusion detection. Expert Systems with Applications, vol. 38, pp.7698-7707, no. 6, (2011).
DOI: 10.1016/j.eswa.2010.12.141
Google Scholar
[7]
Shanxiong, C., Zhongshi, H. and Maoling, P. Sparse base constructed by the non-negative matrix factorization. Journal of Information and Computational Science, vol. 10, p.9, no. 13, (2013).
Google Scholar