Research on Vehicle Detection and Shadow Elimination Based on Static Image Sequence

Article Preview

Abstract:

Focused on static high-definition sequence images captured on the highway bayonet, this paper proposes a new approach for vehicle detection and shadow elimination based on average background modeling, which uses average background model and background subtraction to locate vehicle roughly, eliminates shadow of the vehicle using canny edge detection with dynamic histogram threshold determined by the histogram of the image. Experiments show that this method can locate the position of vehicle quickly and accurately.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2362-2365

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Wren C R, Azarbayejani A, Darrell T, et al. Pfinder: Real-time tracking of the human body[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1997, 19(7): 780-785.

DOI: 10.1109/34.598236

Google Scholar

[2] Gao X, Boult T E, Coetzee F, et al. Error analysis of background adaption[C]/Computer Vision and Pattern Recognition, 2000. Proceedings. IEEE Conference on. IEEE, 2000, 1: 503-510.

DOI: 10.1109/cvpr.2000.855861

Google Scholar

[3] Stauffer C, Grimson W E L. Learning patterns of activity using real-time tracking[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2000, 22(8): 747-757.

DOI: 10.1109/34.868677

Google Scholar

[4] Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking[C]/Computer Vision and Pattern Recognition, 1999. IEEE Computer Society Conference on. IEEE, 1999, 2.

DOI: 10.1109/cvpr.1999.784637

Google Scholar

[5] Mittal A, Paragios N. Motion-based background subtraction using adaptive kernel density estimation[C]/Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on. IEEE, 2004, 2: II-302-II-309 Vol. 2.

DOI: 10.1109/cvpr.2004.1315179

Google Scholar

[6] Wu J, Zhang X, Zhou J. Vehicle detection in static road images with PCA-and-wavelet-based classifier[C]/Intelligent Transportation Systems, 2001. Proceedings. 2001 IEEE. IEEE, 2001: 740-744.

DOI: 10.1109/itsc.2001.948752

Google Scholar

[7] Tsai L W, Hsieh J W, Fan K C. Vehicle detection using normalized color and edge map[C]/Image Processing, 2005. ICIP 2005. IEEE International Conference on. IEEE, 2005, 2: II-598-601.

DOI: 10.1109/icip.2005.1530126

Google Scholar

[8] T. Zhao, R. Nevatia, Car detection in lower solution aerial images, Image Vision Comput. 21(8)(2003)693–703.

DOI: 10.1016/s0262-8856(03)00064-7

Google Scholar

[9] Jia Y, Zhang C. Front-view vehicle detection by Markov chain Monte Carlo method[J]. Pattern Recognition, 2009, 42(3): 313-321.

DOI: 10.1016/j.patcog.2008.07.015

Google Scholar

[10] Prewitt J, Mendelsohn M L. The analysis of cell images*[J]. Annals of the New York Academy of Sciences, 1966, 128(3): 1035-1053.

DOI: 10.1111/j.1749-6632.1965.tb11715.x

Google Scholar