The Simulation of the Rapid Measurement of Total Phosphorus Content in Sewage

Article Preview

Abstract:

The total phosphorus in water mainly exists in the forms of phosphate, condensed phosphate, and the compound of organophosphorus. Chemical sampling analysis method has low measuring accuracy and takes long time. NIPGA technology is used in order to detect the total phosphorus content in sewage quickly, and MCNP-4C is used to take simulating calculation. The calculating results show that the measuring accuracy is lower when the total phosphorus content is less than 0.10 mg/L. But this approach can meet the measurement requirements of total phosphorus content in II-type, III-type, IV-type and V-type water.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2453-2457

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. S. Lim, D. A. Abernethy. On-line coal analysis using fast neutron-induced gamma-rays [J]. Applied Radiation and Isotopes, 2005, 63: 697–704.

DOI: 10.1016/j.apradiso.2005.05.021

Google Scholar

[2] M. Borsaru, M. Berry, M. Biggs, et al. In situ determination of sulphur in coal seams and overburden rock by PGNAA [J]. Nuclear Instruments and Methods in Physics Research B, 2004, 213: 530–534.

DOI: 10.1016/s0168-583x(03)01623-9

Google Scholar

[3] M. Borsaru, Z. Jecny. Application of PGNAA for bulk coal samples in a 4π geometry [J]. Applied Radiation and Isotopes, 2001, 54: 519-526.

DOI: 10.1016/s0969-8043(99)00276-6

Google Scholar

[4] R. Khelifi, A. Amokrane, P. Bode. Detection limits of pollutants in water for PGNAA using Am–Be source [J]. Nuclear Instruments and Methods in Physics Research B, 2007, 262: 329–332.

DOI: 10.1016/j.nimb.2007.06.003

Google Scholar

[5] M. Sohrabpour, M. Shahriari, V. Zarifian, et al. Borehole PGNAA experiment comparison with MCNP [J]. Applied Radiation and Isotopes, 1999, 50: 805-810.

DOI: 10.1016/s0969-8043(98)00103-1

Google Scholar

[6] M. Borsaru, M. Biggs, W. Nichols, et al. The application of prompt-gamma neutron activation analysis to borehole logging for coal [J]. Applied Radiation and Isotopes, 2001, 54: 335-343.

DOI: 10.1016/s0969-8043(00)00109-3

Google Scholar

[7] Gu Deshan, Jing Shiwei, Sang Haifeng, et al. Detection of low caloric power of coal by pulse fast-thermal [J]. Journal of Radioanalytical and Nuclear Chemistry, 2004, 262(2): 493-496.

DOI: 10.1023/b:jrnc.0000046784.20654.df

Google Scholar

[8] Tang L H, zhu z B, zhu H B, et a1. Study of coal flash hydropyrolysis denitrogenation[J]. Fuel Process Technol. , 2003, 81(2): 103-108.

DOI: 10.1016/s0378-3820(03)00009-2

Google Scholar

[9] C. S. Lim, J. R. Tickner, B. D. Sowerby, et al. An on-belt elemental analyzer for the cement industry [J]. Applied Radiation and Isotopes, 2001, 54: 11-19.

DOI: 10.1016/s0969-8043(00)00180-9

Google Scholar

[10] G. Vourvopoulos, P. C. Womble. Pulsed fast/ thermal neutron analysis: a technique for explosives detection [J]. Talanta, 2001, 54: 459–468.

DOI: 10.1016/s0039-9140(00)00544-0

Google Scholar

[11] Xu W C, Kumagai M. Nitrogen evolution during rapid hydropymlysis of coal[J]. Fuel, 2002, 8l(18): 2 325-2 334.

Google Scholar

[12] Liu Yuren, Lu Yanxin, Xie Yali, et al. Development and applications of an on-line thermal neutron prompt-gamma element analysis system [J]. Journal of Radio analytical and Nuclear Chemistry, 1991, 151(1): 83-93.

DOI: 10.1007/bf02040133

Google Scholar

[13] CHENG Dao-Wen, GU De-Shan, LIU Lin-Mao. et al. Improvement of the determination of hydrogen content in a multicomponent sample by D-T generator[J]. Chinese Physics C, 2010, 34(5): 606-609.

DOI: 10.1088/1674-1137/34/5/019

Google Scholar