[1]
Williams E G: Structural Intensity in Thin Cylindrical Shells [J]. Journa1 of Acoustica1 Society of America, 1991, 89(1): 1615-1662.
Google Scholar
[2]
Lee H P, Lin S P, Khun M S: Diversion of Energy Flow near Crack Tips of a Vibrating Plate Using the Structural Intensity Technique[J]. Journa1 of Sound and Vibration. 2006, 291(1): 602-622.
DOI: 10.1016/j.jsv.2006.03.007
Google Scholar
[3]
Y.J. Li,J.C.S. Lai: Prediction of Surface Mobility of a Finite Plate with Uniform Plate with Uniform Force Excitation by Structural Intensity[J]. Applied Acoustics, 2000, 60: 371-383.
DOI: 10.1016/s0003-682x(99)00043-2
Google Scholar
[4]
X.D. Xu.,H.P. Lee Y.Y. Wang,C. Lu: The Energy Flow Analysis in Stiffened Plates of Marine Structures[J]. Thin-WalledStructures, 2004, 42: 979-994.
DOI: 10.1016/j.tws.2004.03.006
Google Scholar
[5]
Zhuxiang, LiTianyun, ZhaoYao, Liujingxi: Investigating the Power Flow Characteristics of Plate with Surface Crack[J]. Engineering Mechanics, 2007, Vol. 24 (2): 62-67.
Google Scholar
[6]
Rice J R, Levy N: The Part-through Surface Crack in an Elastic Plate [J]. Journal of Applied Mechanics. 1972, 3: 185-194.
DOI: 10.1115/1.3422609
Google Scholar
[7]
Delale F, Erdogan F: Line-spring Model for Surface Cracks in a Plate. International Journal of Engineering Science. 1981, 19(10): 1331-1340.
DOI: 10.1016/0020-7225(81)90016-1
Google Scholar
[8]
Delale F, Erdogan F: Application of the Line-spring Model to a Cylindrical Shell Containing a Circumferential or Axial Part-through crack. Journal of Applied Mechanics. 1982, 49(1): 97-102.
DOI: 10.1115/1.3162077
Google Scholar
[9]
Gavric L, Pavic G: Finite Element Method for Computation of Structural Intensity by the Normal Mode Approach [J]. Journal of Sound and Vibration. 1993, 164(1): 29-43.
DOI: 10.1006/jsvi.1993.1194
Google Scholar
[10]
zhangZhiyong, CaiZhe. Proficient in MATLAB6. 5 Edition. Press of Beijing University of Aeronautics and Astronautics. (2003).
Google Scholar