[1]
Moorthy, Anush Krishna, and Alan Conrad Bovik. A two-step framework for constructing blind image quality indices., Signal Processing Letters, IEEE vol. 17 no. 5 pp.513-516. (2010).
DOI: 10.1109/lsp.2010.2043888
Google Scholar
[2]
M.A. Saad, A. C. Bovik, and C. Charrier, DCT Statistics Model-Based Blind Image Quality Assessment, Proceedings of the IEEE International Conference on image Processing (ICIP), pp.3093-3096, Sep. (2011).
DOI: 10.1109/icip.2011.6116319
Google Scholar
[3]
Mittal, Anish, Anush Krishna Moorthy, and Alan Conrad Bovik. No-reference image quality assessment in the spatial domain., IEEE Transactions on Image Processing, vol. 21 no. 12 pp.4695-4708. (2012).
DOI: 10.1109/tip.2012.2214050
Google Scholar
[4]
Mittal, Anish, Rajiv Soundararajan, and Alan C. Bovik. Making a "completely blind" image quality analyzer., Signal Processing Letters, IEEE vol. 20 no. 3 pp.209-212. (2013).
DOI: 10.1109/lsp.2012.2227726
Google Scholar
[5]
Dinesh Jayaraman, Anish Mittal, Anush K. Moorthy and Alan C. Bovik, Objective Quality Assessment of Multiply Distorted Images. , Proceedings of Asilomar Conference on Signals, Systems and Computers, 2012. http: /live. ece. utexas. edu/research/quality/live_multidistortedimage. html.
DOI: 10.1109/acssc.2012.6489321
Google Scholar
[6]
Moorthy, Anush Krishna, and Alan Conrad Bovik. Blind image quality assessment: From natural scene statistics to perceptual quality., IEEE Transactions on Image Processing, vol. 20 no. 12 pp.3350-3364. (2011).
DOI: 10.1109/tip.2011.2147325
Google Scholar
[7]
Chetouani, Aladine, Azeddine Beghdadi, and Mohamed Deriche. Image distortion analysis and classification scheme using a neural approach., 2010 2nd European Workshop onVisual Information Processing (EUVIP), IEEE, (2010).
DOI: 10.1109/euvip.2010.5699124
Google Scholar
[8]
Zhou, Zhi-Hua, and Ming Li. Tri-training: Exploiting unlabeled data using three classifiers., IEEE Transactions on Knowledge and Data Engineering, vol. 17 no. 11 pp.1529-1541. (2005).
DOI: 10.1109/tkde.2005.186
Google Scholar
[9]
Bovik, A.C., Automatic Prediction of Perceptual Image and Video Quality, Proceedings of the IEEE , vol. 101 no. 9, pp.2008-2024. (2013).
Google Scholar
[10]
Ruderman, Daniel L. The statistics of natural images., Network: computation in neural systems vol. 5 no. 4 pp.517-548. (1994).
DOI: 10.1088/0954-898x_5_4_006
Google Scholar
[11]
Srivastava, Anuj, et al. On advances in statistical modeling of natural images., Journal of mathematical imaging and vision vol. 18 no. 1 pp.17-33. (2003).
Google Scholar
[12]
Larson, Eric C., and D. M. Chandler. Categorical image quality (CSIQ) database., Online, http: /vision. okstate. edu/csiq (2010).
Google Scholar
[13]
N. Ponomarenko, V. Lukin, A. Zelensky, K. Egiazarian, M. Carli, F. Battisti, TID2008 - A Database for Evaluation of Full-Reference Visual Quality Assessment Metrics, Advances of Modern Radioelectronics, Vol. 10, pp.30-45, (2009).
Google Scholar
[14]
Everingham, M. and Van~Gool, L. and Williams, C. K. I. and Winn, J. and Zisserman, A. The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results, Online http: /www. pascal-network. org/challenges/VOC/voc2012/workshop/index. html.
DOI: 10.1007/s11263-009-0275-4
Google Scholar