[1]
C. R. Gonzalez, E. Richard Woods, Digital image processing, Pearson Education, 2003, the second edition.
Google Scholar
[2]
Xu Guanlei, Wang Xiaotong, Xu Xiaogang. On Analysis of Bi-dimensional Component Decomposition via BEMD, Pattern Recognition, 2012, 45(4): 1617-1625.
DOI: 10.1016/j.patcog.2011.11.004
Google Scholar
[3]
X. D. Zhang, Modern Signal Processing, Second Edition, Beijing: Tsinghua University Press, Beingjing, (2002).
Google Scholar
[4]
N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, et al., The empirical mode decompositionand the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. Lond. A, vol. 454, p.903–995, (1998).
DOI: 10.1098/rspa.1998.0193
Google Scholar
[5]
C. Han, G. H. Wang, C. D. Fan, A novel method to reduce speckle in SAR images, International Journal of Remote Sensing, vol. 23, no. 23, p.5095–5101, (2002).
DOI: 10.1080/01431160210153110
Google Scholar
[6]
H. Y. Yue, H. D. Guo, C. M. Han, et al, A SAR interferogram filter based on the empirical mode decompositin method, Geoscience and Remote Sensing Symposium, 5, pp.2061-2063, (2001).
DOI: 10.1109/igarss.2001.977903
Google Scholar
[7]
J.C. Nunes, O. Niang, Y. Bouaoune, E. Delechelle, et al., Texture analysis based on the bidimensional empirical mode decomposition with gray-level co-occurrence models, IEEE, Machine Vision and Application, 2, p.633 – 635, (2003).
DOI: 10.1109/isspa.2003.1224962
Google Scholar
[8]
G.L. Xu, X.T. Wang, X.G. Xu, et al, Image enhancement algorithm based on neighborhood limited empirical mode decomposition, , Acta Electronica Sinica, vol. 34, no. 3, pp.99-103, (2006).
Google Scholar
[9]
G.L. Xu, X.T. Wang, X.G. Xu, T. Zhu, Multi-band image fusion algorithm based on neighborhood limited empirical mode decomposition, , Journal of Infrared and Millimeter Waves, vol. 25, no. 3, pp.225-228, (2006).
Google Scholar
[10]
G.L. Xu, X.T. Wang, X.G. Xu, Neighborhood limited empirical mode decomposition and application in image processing, , Fourth International Conference on Image and Graphics, 2007, Chengdu of China, pp.149-154.
DOI: 10.1109/icig.2007.50
Google Scholar
[11]
G.L. Xu, X.T. Wang, X.G. Xu, Improved bi-dimensional EMD and Hilbert spectrum for the analysis of textures, , Pattern Recognition, 42(5) , pp.718-734, (2009).
DOI: 10.1016/j.patcog.2008.09.017
Google Scholar
[12]
G.L. Xu, X.T. Wang, X.G. Xu, Improved Bi-Dimensional Empirical Mode Decomposition based on 2D Assisted Signals: Analysis and Application, , 2011, 5(3): 205-221.
DOI: 10.1049/iet-ipr.2009.0158
Google Scholar
[13]
J.P. Havlicek, J.W. Havlicek, N.D. Mamuya, A.C. Bovik, Skewed 2D Hilbert transforms and computed AM–FM models, in: IEEE Proceedings of the ICIP'98, 1998, p.602–606.
DOI: 10.1109/icip.1998.723573
Google Scholar
[14]
S.L. Hahn, Multidimensional complex signals with single-orthant spectra, IEEE Proc. 80 (8) (1992) 1287–1300.
DOI: 10.1109/5.158601
Google Scholar
[15]
U. Spagnolini, 2-D phase unwrapping and instantaneous frequency estimation, IEEE Trans. Geosci. Remote Sensing 33 (3) (1995) 579–589.
DOI: 10.1109/36.387574
Google Scholar
[16]
G. L. Xu, X. T. Wang, X.G. Xu, Extended Hilbert transform for multidimensional signals, in: IET Proceedings of the VIE2008, Xi'an of China, 2008, p.292–297.
Google Scholar
[17]
G.L. Xu, X.T. Wang, X.G. Xu, Bi-orthant Hilbert transform, Progr. Nat. Sci. 17 (8) (2007) 1120–1129.
Google Scholar
[18]
G.L. Xu, X.T. Wang, X.G. Xu, Generalized Hilbert transform and its properties in 2D LCT domain, Signal Processing, 89 (7) (2009) 1395–1402.
DOI: 10.1016/j.sigpro.2009.01.009
Google Scholar
[19]
D. Gabor, Theory of communication, IEE Proceedings 93 (1946)429–457.
Google Scholar
[20]
E. Bedrosian, A product theorem for Hilbert transform, IEEE, 51 (1963) 868-869.
Google Scholar
[21]
H. Stark , An extension of the Hilbert transform product theorem, IEEE Proc, 59(1971)1359-1360.
DOI: 10.1109/proc.1971.8420
Google Scholar