The Bi-Dimensional Bedrosian’s Principle for Image Decomposition

Article Preview

Abstract:

Based on the derived bi-dimensional Bedrosian’s principles and the original multicomponents, we provide the combined bi-dimensional Bedrosian’s principle so that the monocomponents in multicomponents can be separated in the case that the existent methods fail. The proposed method can solve the problems caused by the cross-angle and amplitude ratio and frequency ratio and so on between these components that BEMD fails to solve. Experiments support the proposed methods.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3854-3858

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. R. Gonzalez, E. Richard Woods, Digital image processing, Pearson Education, 2003, the second edition.

Google Scholar

[2] Xu Guanlei, Wang Xiaotong, Xu Xiaogang. On Analysis of Bi-dimensional Component Decomposition via BEMD, Pattern Recognition, 2012, 45(4): 1617-1625.

DOI: 10.1016/j.patcog.2011.11.004

Google Scholar

[3] X. D. Zhang, Modern Signal Processing, Second Edition, Beijing: Tsinghua University Press, Beingjing, (2002).

Google Scholar

[4] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, et al., The empirical mode decompositionand the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. Lond. A, vol. 454, p.903–995, (1998).

DOI: 10.1098/rspa.1998.0193

Google Scholar

[5] C. Han, G. H. Wang, C. D. Fan, A novel method to reduce speckle in SAR images, International Journal of Remote Sensing, vol. 23, no. 23, p.5095–5101, (2002).

DOI: 10.1080/01431160210153110

Google Scholar

[6] H. Y. Yue, H. D. Guo, C. M. Han, et al, A SAR interferogram filter based on the empirical mode decompositin method, Geoscience and Remote Sensing Symposium, 5, pp.2061-2063, (2001).

DOI: 10.1109/igarss.2001.977903

Google Scholar

[7] J.C. Nunes, O. Niang, Y. Bouaoune, E. Delechelle, et al., Texture analysis based on the bidimensional empirical mode decomposition with gray-level co-occurrence models, IEEE, Machine Vision and Application, 2, p.633 – 635, (2003).

DOI: 10.1109/isspa.2003.1224962

Google Scholar

[8] G.L. Xu, X.T. Wang, X.G. Xu, et al, Image enhancement algorithm based on neighborhood limited empirical mode decomposition, , Acta Electronica Sinica, vol. 34, no. 3, pp.99-103, (2006).

Google Scholar

[9] G.L. Xu, X.T. Wang, X.G. Xu, T. Zhu, Multi-band image fusion algorithm based on neighborhood limited empirical mode decomposition, , Journal of Infrared and Millimeter Waves, vol. 25, no. 3, pp.225-228, (2006).

Google Scholar

[10] G.L. Xu, X.T. Wang, X.G. Xu, Neighborhood limited empirical mode decomposition and application in image processing, , Fourth International Conference on Image and Graphics, 2007, Chengdu of China, pp.149-154.

DOI: 10.1109/icig.2007.50

Google Scholar

[11] G.L. Xu, X.T. Wang, X.G. Xu, Improved bi-dimensional EMD and Hilbert spectrum for the analysis of textures, , Pattern Recognition, 42(5) , pp.718-734, (2009).

DOI: 10.1016/j.patcog.2008.09.017

Google Scholar

[12] G.L. Xu, X.T. Wang, X.G. Xu, Improved Bi-Dimensional Empirical Mode Decomposition based on 2D Assisted Signals: Analysis and Application, , 2011, 5(3): 205-221.

DOI: 10.1049/iet-ipr.2009.0158

Google Scholar

[13] J.P. Havlicek, J.W. Havlicek, N.D. Mamuya, A.C. Bovik, Skewed 2D Hilbert transforms and computed AM–FM models, in: IEEE Proceedings of the ICIP'98, 1998, p.602–606.

DOI: 10.1109/icip.1998.723573

Google Scholar

[14] S.L. Hahn, Multidimensional complex signals with single-orthant spectra, IEEE Proc. 80 (8) (1992) 1287–1300.

DOI: 10.1109/5.158601

Google Scholar

[15] U. Spagnolini, 2-D phase unwrapping and instantaneous frequency estimation, IEEE Trans. Geosci. Remote Sensing 33 (3) (1995) 579–589.

DOI: 10.1109/36.387574

Google Scholar

[16] G. L. Xu, X. T. Wang, X.G. Xu, Extended Hilbert transform for multidimensional signals, in: IET Proceedings of the VIE2008, Xi'an of China, 2008, p.292–297.

Google Scholar

[17] G.L. Xu, X.T. Wang, X.G. Xu, Bi-orthant Hilbert transform, Progr. Nat. Sci. 17 (8) (2007) 1120–1129.

Google Scholar

[18] G.L. Xu, X.T. Wang, X.G. Xu, Generalized Hilbert transform and its properties in 2D LCT domain, Signal Processing, 89 (7) (2009) 1395–1402.

DOI: 10.1016/j.sigpro.2009.01.009

Google Scholar

[19] D. Gabor, Theory of communication, IEE Proceedings 93 (1946)429–457.

Google Scholar

[20] E. Bedrosian, A product theorem for Hilbert transform, IEEE, 51 (1963) 868-869.

Google Scholar

[21] H. Stark , An extension of the Hilbert transform product theorem, IEEE Proc, 59(1971)1359-1360.

DOI: 10.1109/proc.1971.8420

Google Scholar