Imperata cylindrica / Sacred Grass Long Fibre Reinforced Polyester Composites – An Experimental Determination of Properties

Article Preview

Abstract:

In the present work a new natural fibre i.e. sacred grass botanically called Imperata Cylindrica is introduced and it belongs to vedic grass family. The fibre is extracted by splitting method and is reinforced into the polyester matrix by hand lay-up technique for the fabrication of tensile, flexural, impact, dielectric test specimens as per ASTM procedures. Highest values of tensile strength (50.96 MPa), modulus (990.86 MPa) are observed for sacred grass fibre reinforced polyester composites at maximum volume fraction of chemically treated fibre. At 14.75 %, 35.89 % sacred grass fibre volume fraction the composites exhibited flexural strength, modulus of 43.19 MPa, 4.81 GPa respectively. Impact strength of 92.53 kJ/m2 is obtained for the composites reinforced with 34.73 % volume fraction of sacred grass fibres. The dielectric strength of the composites varies from 10 to 6.66 kV/mm for composites reinforced with fibres from minimum (6.26 %) to maximum (32.25 %) fibre content.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

131-137

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Mahdihassan, Three important vedic grasses, Indian J. History of Sci. 22 (1987) 286-291.

Google Scholar

[2] V. G. Geethamma, Reethamma Joseph, Sabu Thomas, Short coir fiber-reinforced natural rubber composites: Effects of fiber length, orientation and alkali treatment, J. App. Poly. Sci. 55 (1995) 583–594.

DOI: 10.1002/app.1995.070550405

Google Scholar

[3] J. Rout, M. Misra, S. S. Tripathy, S. K. Nayak, A. K. Mohanty, The influence of fibre treatment on the performance of coir-polyester composites, Comp. Sci. and Tech. 61 (2011) 1303–1310.

DOI: 10.1016/s0266-3538(01)00021-5

Google Scholar

[4] I. A. T. Razera, E. Frollini, Composites based on jute fibers and phenolic matrices: properties of fibers and composites, J. App. Poly. Sci. 91 (2004) 1077–1085.

DOI: 10.1002/app.13224

Google Scholar

[5] K. L. Pickering, A. C. Ji. Abdalla, A. G. McDonald, R. A. Franich, The effect of silane coupling agents on radiate pine fibre for use in thermoplastic matrix composites, Comp. Part A 34 (2003)915–926.

DOI: 10.1016/s1359-835x(03)00234-3

Google Scholar

[6] A. Arbelaiz, B. Fernandez, J. A. Ramos, A. Retegi, Llanco-Ponte, I. Mondragon, Mechanical properties of short flax fibre bundle/polypropylene composites: Influence of matrix/fibre modification, fibre content, water uptake and recycling, Comp. Sci. and Tech. 65 (2005) 1582–1592.

DOI: 10.1016/j.compscitech.2005.01.008

Google Scholar

[7] Koichi Goda, M. S. Sreekala, Alexandre Gomes, Takeshi Kaji, Junji Ohgi, Improvement of plant based natural fibers for toughening green composites-Effect of load application during mercirization of ramie fibers, Comp. Part A 37 (2006) 2213–2220.

DOI: 10.1016/j.compositesa.2005.12.014

Google Scholar

[8] Fabio Tomczak, Thais Helena Demetrio Sydenstricker, Kestur Gundappa Satyanarayana, Studies on lignocellulosic fibers of Brazil: Part II: Morphology and properties of brazilian coconut fibers, Comp. Part A 38 (2007) 1710–1721.

DOI: 10.1016/j.compositesa.2007.02.004

Google Scholar

[9] Marie J Le Guen, Roger H Newman, Pulped phormium tenax leaf fibres as reinforcement for epoxy composites, Comp. Part A 38 (2007) 2109–2115.

DOI: 10.1016/j.compositesa.2007.07.001

Google Scholar

[10] N. Srinivasababu, K. Murali Mohan Rao, J. Suresh Kumar, Tensile properties of turmeric fibre reinforced polyester composites, Indian J. Fibre and Text. Res. 35 (2010) 324–329.

Google Scholar

[11] Nadendla Srinivasababu, J. Suresh Kumar, K. Vijaya Kumar Redy, Mechanical and dielectric properties of PTSL FRP composites, Adv. Mat. Res. 585 (2012) 311–316.

DOI: 10.4028/www.scientific.net/amr.585.311

Google Scholar