[1]
S. Awtar, A. H. Slocum, Design of parallel kinematic x-y flexure mechanisms, in: Proc. of IDETC/CIE 2005, ASME 2005 Int. Design Engineering Technical Conferences. Computers and Information in Engineering Conference, Sept. 24-28, 2005, Long Beach, California, USA, p.89.
DOI: 10.1115/detc2005-85413
Google Scholar
[2]
Š. Havlík, G. Carbone, Design of compliant Robotic Micro-Devices, in: Proc. 15th Int. Workshop on Robobics in Alpe-Adria-Danube Region, RAAD 2006, June 15 – 17, 2006, Balatonfured, Hungary, ISBN: 963-7154-48-5.
DOI: 10.1109/raad.2010.5524556
Google Scholar
[3]
Š. Havlik: Analysis and modeling flexible robotic (micro) mechanisms. In: Proceedings of the 11th World Congress in Mechanism and Machine Science. Tianjin, April 1-4, 2004, Vol. 3,. China, pp.1390-1395.
Google Scholar
[4]
Š. Havlík.: Modeling, analysis and optimal design of multi-component force/displacement sensors. Proc. on the First ECPD Int. Conf. on Advanced Robotics and Intelligent Automation. Sept. 6-8, 1995, Athens, Greece. pp.283-289.
Google Scholar
[5]
L. L. Howell, Compliant Mechanisms, John Wiley & Sons, 2001, ISBN 047138478X.
Google Scholar
[6]
J. Hricko, Modeling Compliant Mechanisms – Comparison of Models in MATLAB / Sim-Mechanics vs. FEM, in: 21th Int. Workshop on Robotics in Alpe-Adria-Danube Region, Napoli, Italy, 2012, ISBN 978-88-95430-45-4, pp.57-62.
DOI: 10.1109/raad.2010.5524554
Google Scholar
[7]
B. H. Kang. et al. Analysis and design of parallel mechanisms with flexure joints, in Proc. of IEEE, Int. Conf. on Robotics and Automation, 2004, p.4097–4102.
Google Scholar
[8]
Lobontiu, N, Garcia, E: Two-axis flexure hinges with axially-collocated and symmetric notches,. Computers and Structures 81 (2003) 1329–1341.
DOI: 10.1016/s0045-7949(03)00056-7
Google Scholar
[9]
N. Lobontiu, Compliant Mechanisms: Design of Flexure Hinges, CRC Press, 2003, ISBN 0849313678.
Google Scholar
[10]
Mohd Nashrul Mohd Zubir, Bijan Shirinzadeh. Development of a high precision flexure-based microgripper. Precision Engineering 33 (2009) 362–370.
DOI: 10.1016/j.precisioneng.2008.10.003
Google Scholar
[11]
T. -F., Niaritsiry N. Fazenda, and R. Clavel, Study of the sources of inaccuracy of a 3DOF flexure hinge-based parallel manipulator. Proc. of IEEE Int. Conf. on Robotics and Automation, 2004, p.4091–4096.
DOI: 10.1109/robot.2004.1308911
Google Scholar
[12]
P. R. Ouyang et al. Micro-motion devices technology: The state of arts review. Int J Adv. Manuf. Technology, 2008. 38, p.463–478.
DOI: 10.1007/s00170-007-1109-6
Google Scholar
[13]
Qiaokang Liang1, et al. Design and Analysis of a Novel Six-Component F/T Sensor based on CPM for Passive Compliant Assembly. Measurement Science Review, Volume 13, No. 5, (2013).
DOI: 10.2478/msr-2013-0038
Google Scholar
[14]
J. Rausch and R. Werthschutzky. A miniature piezoresistive multi-component force sensor for minimally invasive sugery. Proc. Sensor 2009, Vol. 1. A3. 3.
DOI: 10.5162/sensor09/v1/a3.3
Google Scholar
[15]
T.S. Smith, Flexures: elements of elastic mechanisms, Gordon and Breach Science Publ., 2000, ISBN 90-5699-261-9.
Google Scholar
[16]
S. Venanzi, P. Giesen and V. Parenti-Castelli. A novel technique for position analysis of planar compliant mechanisms. Mechanism and Machine Theory (2005).
DOI: 10.1016/j.mechmachtheory.2005.01.009
Google Scholar
[17]
K. Y. Yong, T-F. Lu, D.C. Handley, Review of circular flexure hinge design equations and derivation of empirical formulations, Precision Engineering 2008, (32), ISSN 0141-6359, p.63–70.
DOI: 10.1016/j.precisioneng.2007.05.002
Google Scholar
[18]
Y. K. Yong, T-Fu Lu. Kinetostatic modeling of 3-RRR compliant micro-motion stages with flexure hinges. Mechanism and Machine Theory 44 (2009) 1156–1175.
DOI: 10.1016/j.mechmachtheory.2008.09.005
Google Scholar
[19]
www. dlr. de/rm/en/desktopdefault. aspx/tabid-3806/6231.
Google Scholar