Design Morphological Changing All-Terrain-Rover and Optimizing with Genetic Algorithm for Enhancing Mobility

Article Preview

Abstract:

This paper proposes a design of morphological changing all-terrain-rover as new concept of hybrid-type mobile robot for enhancing mobility. Mobility evaluation is performed by mechanical theories, and its calculating methods are used for simulations. A feasibility of suggested design of all-terrain-rover is investigated by simulation. After verifying feasibility, this paper applies a PD control with the genetic algorithm as optimizing gains for enhancing mobility. The mobility is able to verify by fitness value from simulation results, and it shows that proposed rover can overcome a mobility limitation of former designed rovers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

242-248

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Fish, UGV's in Future Combat Systems, Proc. of the SPIE-unmmanned Ground Vehicle Technology VI, Orlando, USA, 2004, pp.288-291.

Google Scholar

[2] F. L. Menn, P. Bidaud, F. B. Amar, Generic differential kinematic modeling of articulated multi-monocycle mobile robots, Proc. of the 2006 IEEE Ineternational Conference on Robotics and Automation, Orlando, Florida, 2006, pp.1505-1510.

DOI: 10.1109/robot.2006.1641921

Google Scholar

[3] C. Distante, G. Indiveri, G. Reina, An application of mobile robotics for olfactory monitoring of hazardous industrial sites, Industrial Robot: An International Journal, 36/1 (2009) pp.51-59.

DOI: 10.1108/01439910910924675

Google Scholar

[4] A. Meghdari, H. N. Pishkenari, A. L. Gaskarimahalle, S. H. Mahboobi, R. Karimi, A Novel Approach for Optimal Design of a Rover Mechanism, Journal of Intelligent and Robotic Systems, 44 (2005) pp.291-312.

DOI: 10.1007/s10846-005-9013-5

Google Scholar

[5] K. Nagatani, A. Yamasaki, K. Yoshida, T. Adachi, Development and control method of six-wheel robot with rocker structure, Proc. of the 2007 IEEE International Workshop on Safety, Security and Rescue Robotics, Rome, Italy, (2007).

DOI: 10.1109/ssrr.2007.4381279

Google Scholar

[6] R. Volpe, J. Balaram, T. Ohm, R. Ivlev, Rocky7: a next generation Mars rover prototype, Advanced Robotics 11 (1997) p.341–358.

DOI: 10.1163/156855397x00362

Google Scholar

[7] R.A. Lindemann, C.J. Voorhees, Mars exploration rover mobility assembly design, test and performance, IEEE International Conference on Systems, Man and Cybernetics, Waikoloa, USA, (2005).

DOI: 10.1109/icsmc.2005.1571187

Google Scholar

[8] B. Chen, R. Wang, Y. Jia, L. Guo, L. Yang, Design of a high performance suspension for lunar rover based on evolution, Acta Astronautica 64 (2009) p.925–934.

DOI: 10.1016/j.actaastro.2008.11.009

Google Scholar

[9] D. Chugo, K. Kawabata, H. Kaetsu, H. Asama, T. Mishima, Step climbing omnidirectional mobile robot with passive linkages, Proc. of SPIEoptomechatronic Systems Control, Sapporo, Japan, (2005).

DOI: 10.1117/12.648372

Google Scholar

[10] S. Nakajima, Development of four-wheel-type mobile robot for rough terrain and verification of its fundamental capability of moving on rough terrain, Proc. of IEEE International Conference on Robotics and Biomimetics, Bangkok, Thailand, (2009).

DOI: 10.1109/robio.2009.4913302

Google Scholar

[11] R. Siegwart, P. Lamon, T. Estier, M. Lauria, R. Piguet, Innovative design for wheeled locomotion in rough terrain, Robotics and Autonomous Systems 20 (2002) p.151–162.

DOI: 10.1016/s0921-8890(02)00240-3

Google Scholar

[12] S. Nakajima, Concept of a novel four-wheel-type mobile robot for rough terrain, RT-mover, Proc. of IEEE International Conference on Intelligent Robots and Systems, St. Louis, USA, (2009).

DOI: 10.1109/iros.2009.5354823

Google Scholar

[13] F. Michaud, et al., Multi-modal locomotion robotic platform using leg-track-wheel articulations, Autonomous Robots 18 (2005) p.137–156.

DOI: 10.1007/s10514-005-0722-1

Google Scholar

[14] M. Lacagnina, G. Muscato, R. Sinatra, Kinematics, dynamics and control of a hybrid robot wheeleg, Robotics and Autonomous Systems 45 (2003) p.161–180.

DOI: 10.1016/j.robot.2003.09.006

Google Scholar

[15] T. Thueer, "Mobility evaluation of wheeled all-terrain robots, ETH, Zurich, DISS. ETH No. 18160, (2009).

Google Scholar

[16] T. Thueer, P, Lamon, A. Kerbs, R. Siegwart, CRAB – Exploration rover with advanced obstacle negotiation capabilities, 9th ESA Workshop on Advanced Space Technologies for Robotics and Automation, Noordwijk, Netherlands, (2006).

Google Scholar

[17] T. Thueer, A, Kerbs, R. Siegwart, Performance Comparison of Rough-Terrain Robots – Simulation and Hardware, Journal of Field Robotics Vol. 24, No. 3, pp.251-271, (2007).

DOI: 10.1002/rob.20185

Google Scholar

[18] T. Thuerr, R. Siegwart, Mobility evaluation of wheeled all-terrain robots, Robotics and Autonomous System Vol. 58, pp.508-519, (2010).

DOI: 10.1016/j.robot.2010.01.007

Google Scholar

[19] D. S. Apostolopoulos, Analytical Configuration of Wheeled Robotic Locomotion, Carnegie Melon University, USA, CMU-RI-TR-01-08, (2001).

Google Scholar

[20] E. G. Papadopoulos, D. A. Rey, A New Measure of Tipover Stability Margin for Mobile Manipulators, IEEE International Conference on Robotics and Automation, Minneapolis, Minnesota, (1996).

DOI: 10.1109/robot.1996.509185

Google Scholar

[21] K. Iagnemma, A. Rzepniewski, S. Dubowsky, P. Pirjanian, T. Huntsberger, P. Schenker, Mobile robot kinematic reconfigurability for rough-terrain, SPIE Proc. 4196, Symposium on Sensor Fusion and Decentralized Control in Robotic Systems Ⅲ Boston, USA, (2000).

DOI: 10.1117/12.403739

Google Scholar

[22] D. Lachat, A. Kerbs, T. Thueer, R. Siegwart, Antarctica rover design and optimization for limited poser consumption, 4th IFAC-Symposium on Mechatronic Systems, Heidelberg, Germany, (2006).

DOI: 10.3182/20060912-3-de-2911.00136

Google Scholar