Crack Initiation Observation in Early Stage of Rolling Contact Fatigue of SUJ2 Using a Single-Ball Apparatus

Article Preview

Abstract:

A single-ball RCF testing machine was used in order to investigate crack initiation of SUJ2 material at early stage of fatigue. This machine enables observation of a full cross section by sectioning the specimen only once. The RCF tests were carried out under a Hertzian stress of 5.3 GPa, at 3000 rpm. All of the cracks initiated from non-metallic inclusions on 300 mm2 sized area were counted, and the relation between the number of cracks and their initiation depths was drawn. Furthermore subsurface shear stress distribution was calculated. Empirical data of the crack distributions and subsurface stress distribution was compared. It was found that the crack starts growing during 3.3×104 - 1.0×105 cycles by the subsurface shear stress.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

421-424

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Lundberg and A. Palmgren. Acta Polytechnica, Mechanical Engineering Series, 1. (1947).

Google Scholar

[2] G. Lundberg and A. Palmgren. Acta Polytechnica, Mechanical Engineering Series, 2. (1952).

Google Scholar

[3] T. A. Harris and J. I McCool ASME, J. Trib., Vol. 118, pp.297-310. (1996).

Google Scholar

[4] E. V. Zaretsky, J. V. Poplawski and S. M. Peters, STLE Trib. Trans., Vol. 39, pp.501-503. (1996).

Google Scholar

[5] E. V. Zaretsky, R. J. Parker and W. J. Anderson, Trans. ASME J. Lubrication Tech., Vol. 91, pp.314-319. (1969).

Google Scholar

[6] N. G. Popinceanu, E. Diaconescu and S. Cretu, Wear, Vol. 71, pp.265-282. (1981).

DOI: 10.1016/0043-1648(81)90225-8

Google Scholar

[7] R. S. Zhou, STLE Tribology Trans., Vol. 36, pp.329-340. (1993).

Google Scholar

[8] C. A. Moyer, STLE Tribology Trans., Vol. 33, pp.535-542. (1990).

Google Scholar

[9] E. Ioannides and T. A. Harris, Trans. ASME, J. Trib., Vol. 107, pp.367-378. (1985).

Google Scholar

[10] D. Nélias, M. L. Dumont, F. Champiot, A. Vincent, D. Girodin, R. Fougeres and L. Flamand, Journal of Tribology, Vol. 121, No. 2, pp.240-251. (1999).

DOI: 10.1115/1.2833927

Google Scholar

[11] J. Rozwadowska, K. Kida, E. C. Santos, T. Honda, K. Kanemasu and K. Hashimoto, Advanced Materials Research, Vols. 418-420, pp.1613-1617. (2011).

DOI: 10.4028/www.scientific.net/amr.418-420.1613

Google Scholar

[12] S. Hazeyama, J. Rozwadowska, K. Kida, E. C. Santos, T. Honda, K. Kanemasu and T. Shibukawa, Advanced Materials Research, Vol. 566, pp.182-186. (2012).

DOI: 10.4028/www.scientific.net/amr.566.182

Google Scholar

[13] S. Hazeyama, J. Rozwadowska and K. Kida, , Applied Mechanics and Materials Vol. 307, pp.342-346, (2013).

Google Scholar

[14] K. L. Johnson: Contact Mechanics (Cambridge University Press, England). (1985).

Google Scholar

[15] A. Sackfield and D. A. Hills: The Journal of Strain Analysis for Engineering Design, Vol. 18, No. 2, pp.101-105. (1983).

Google Scholar