[1]
Paresh Chandra Ray*: Size and Shape Dependent Second Order Nonlinear Optical Propertiesof Nanomaterials and Their Application in Biological and Chemical Sensing, Chem. Rev. 2010, 110, 5332-5365.
DOI: 10.1021/cr900335q
Google Scholar
[2]
R.S. Wagner, W.C. ELLIS: Vapor-liquid-solid mechanism of single crystal growth[J]. Applied Physics Letters, 1964, 4: 89-90.
DOI: 10.1063/1.1753975
Google Scholar
[3]
E.I. Givargizov: Periodic instability in whisker growth. Journal of Crystal Growth, 1975, 31: 20-30.
Google Scholar
[4]
A.V. Zayats, I.I. Smolyaninov, A.A. Maradudin: Nano-optics of surface Plasmon polaritions. Physics reports, 2005, 408(3-4): 131-314.
DOI: 10.1016/j.physrep.2004.11.001
Google Scholar
[5]
A.J. Haes, R.P. Van Duyne. A Nanoscale Optical Biosensor: Sensitivity and Selectivity of an Approach Based on the Localized Surface Plasmon ResonanceSpectroscopy of Triangular silver Nanoparticles.J. Am. Chem. Soc., 2002, 124(35): 10596-10604.
DOI: 10.1021/ja020393x
Google Scholar
[6]
J. Zhao,A. Das R.P. Van Duyne, et al. Resonance Surface Plasmon Spectroscopy: Low Molecular Weight Substrate Binding to Cytochrome P450. J. Am. Chem. Soc., 2006, 128(34): 11004-11005.
DOI: 10.1021/ja0636082
Google Scholar
[7]
W. Knoll. Interfaces and Thin Films as seen by Bound Electromagnetic Waves. Annu. Rev. Phys. Chem., 1998, 49: 569-638.
DOI: 10.1146/annurev.physchem.49.1.569
Google Scholar
[8]
M. Quinten,A. Leitner, F.R. Aussenegg: Electromagnetic Energy Transport via Linear Chains of Silver Nanoparticles, Opt. Lett., 1998, 23(17): 1331-1333.
DOI: 10.1364/ol.23.001331
Google Scholar
[9]
M.L. Brongersma, J.W. Hartman H.A. Atwater: Electromagnetic Energy Transfer and Switching in Nanoparticle Chain Arrays below the Diffraction Limit. Phys. Rev. B, 2000, 62(24): 16356-16359.
DOI: 10.1103/physrevb.62.r16356
Google Scholar
[10]
R.G. Freeman, K.C. Grabar M.J. Natan, et al: Self-Assembled Metal Colloidal Monolayers: An Approach to SERS Substrates. Science, 1995, 267: 1629-1632.
DOI: 10.1126/science.267.5204.1629
Google Scholar
[11]
A.D. McFarland, M.A. Young, R.P. Van Duyne, et al: Wavelength-Scanned Surface-Enhanced Raman Excitation Spectroscopy[J].J. Phys. Chem. B, 2005, 109(22): 11279-11285.
DOI: 10.1021/jp050508u
Google Scholar
[12]
C.L. Haynes, R.P. Van Duyne. Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics. J. Phys. Chem. B, 2001, 105(24): 5599-5611.
DOI: 10.1021/jp010657m
Google Scholar
[13]
L.J. Sherry, R. Jin R.P. Van Duyne, et al. Localized Surface Plasmon Resonance Spectroscopy of Single Silver TriangularNanoprisms[J]. Nano. Lett., 2006, 6(9): 2060-(2065).
DOI: 10.1021/nl061286u
Google Scholar
[14]
L.J. Sherry, S.H. Chang, R.P. Van Duyne: Localized Surface Plasmon Resonance Spectroscopy of Single Silver Nanocubes, Nano. Lett., 2005, 5(10): 2034-(2038).
DOI: 10.1021/nl0515753
Google Scholar
[15]
W.Y. Huang, W. Qian, M.A. El-Sayed. Coherent: Vibrational Oscillation in GoldPrismatic Monolayer Periodic Nanoparticle Arrays, Nano. Lett., 2004, 4(9): 1741-1747.
DOI: 10.1021/nl048875p
Google Scholar
[16]
C.F. Bohren, D.R. Huffman: Absorption and Scattering of Light by Small Particles. New York: John Wiley&Sons, 1983: 120-131.
Google Scholar
[17]
U. Kreibig, M. Vollmer: Optical Properties of Metal Clusters, Heidelberg, Germany: Springer-Verlag, 1995, 25.
Google Scholar
[18]
K. Okamoto, I. Niki, A. Shvartser, et al: Surface-plasmon-enhanced light emitters based on InGaN quantum wells, Nature materials, 2004, 3: 601-605.
DOI: 10.1038/nmat1198
Google Scholar
[19]
Ekinci, Y. Solak, H.H., Loffler, J.F.: Plasmon resonances of aluminum nanoparticles and nanorods, Journal of Applied Physics (Volume: 104 , Issue: 8 ).
Google Scholar
[20]
George H. Chan, Jing Zhao, George C. Schatz, * and Richard P. Van Duyne* : Localized Surface Plasmon Resonance Spectroscopy of Triangular Aluminum Nanoparticles, J. Phys. Chem. C 2008, 112, 13958–13963.
DOI: 10.1021/jp804088z
Google Scholar