Tunable DUV Locolized Plasmonic Absorption by Al Metallic Nanoparticles Arrays

Article Preview

Abstract:

We dominated localized surface plasmon resonance (LSPR) of aluminum (Al) by controlling their size and density. We report the implementation of Al nanoparticles (NPs) fabricated on the surface of the Ta2O5 layer on glass for localized surface plasmon resonances (LSPRs) coupling. The size, density controllable small Al NPs were fabricated using oblique angle deposition method. The optical properties of the NPs array were studied by UV spectrophotometer and finite-difference time-domain (FDTD) simulations. We found that the LSP resonance wavelength of different sizes of Al NPs array exists a blue shift in the extinction spectrum as the particle size decreases.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

65-70

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Paresh Chandra Ray*: Size and Shape Dependent Second Order Nonlinear Optical Propertiesof Nanomaterials and Their Application in Biological and Chemical Sensing, Chem. Rev. 2010, 110, 5332-5365.

DOI: 10.1021/cr900335q

Google Scholar

[2] R.S. Wagner, W.C. ELLIS: Vapor-liquid-solid mechanism of single crystal growth[J]. Applied Physics Letters, 1964, 4: 89-90.

DOI: 10.1063/1.1753975

Google Scholar

[3] E.I. Givargizov: Periodic instability in whisker growth. Journal of Crystal Growth, 1975, 31: 20-30.

Google Scholar

[4] A.V. Zayats, I.I. Smolyaninov, A.A. Maradudin: Nano-optics of surface Plasmon polaritions. Physics reports, 2005, 408(3-4): 131-314.

DOI: 10.1016/j.physrep.2004.11.001

Google Scholar

[5] A.J. Haes, R.P. Van Duyne. A Nanoscale Optical Biosensor: Sensitivity and Selectivity of an Approach Based on the Localized Surface Plasmon ResonanceSpectroscopy of Triangular silver Nanoparticles.J. Am. Chem. Soc., 2002, 124(35): 10596-10604.

DOI: 10.1021/ja020393x

Google Scholar

[6] J. Zhao,A. Das R.P. Van Duyne, et al. Resonance Surface Plasmon Spectroscopy: Low Molecular Weight Substrate Binding to Cytochrome P450. J. Am. Chem. Soc., 2006, 128(34): 11004-11005.

DOI: 10.1021/ja0636082

Google Scholar

[7] W. Knoll. Interfaces and Thin Films as seen by Bound Electromagnetic Waves. Annu. Rev. Phys. Chem., 1998, 49: 569-638.

DOI: 10.1146/annurev.physchem.49.1.569

Google Scholar

[8] M. Quinten,A. Leitner, F.R. Aussenegg: Electromagnetic Energy Transport via Linear Chains of Silver Nanoparticles, Opt. Lett., 1998, 23(17): 1331-1333.

DOI: 10.1364/ol.23.001331

Google Scholar

[9] M.L. Brongersma, J.W. Hartman H.A. Atwater: Electromagnetic Energy Transfer and Switching in Nanoparticle Chain Arrays below the Diffraction Limit. Phys. Rev. B, 2000, 62(24): 16356-16359.

DOI: 10.1103/physrevb.62.r16356

Google Scholar

[10] R.G. Freeman, K.C. Grabar M.J. Natan, et al: Self-Assembled Metal Colloidal Monolayers: An Approach to SERS Substrates. Science, 1995, 267: 1629-1632.

DOI: 10.1126/science.267.5204.1629

Google Scholar

[11] A.D. McFarland, M.A. Young, R.P. Van Duyne, et al: Wavelength-Scanned Surface-Enhanced Raman Excitation Spectroscopy[J].J. Phys. Chem. B, 2005, 109(22): 11279-11285.

DOI: 10.1021/jp050508u

Google Scholar

[12] C.L. Haynes, R.P. Van Duyne. Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics. J. Phys. Chem. B, 2001, 105(24): 5599-5611.

DOI: 10.1021/jp010657m

Google Scholar

[13] L.J. Sherry, R. Jin R.P. Van Duyne, et al. Localized Surface Plasmon Resonance Spectroscopy of Single Silver TriangularNanoprisms[J]. Nano. Lett., 2006, 6(9): 2060-(2065).

DOI: 10.1021/nl061286u

Google Scholar

[14] L.J. Sherry, S.H. Chang, R.P. Van Duyne: Localized Surface Plasmon Resonance Spectroscopy of Single Silver Nanocubes, Nano. Lett., 2005, 5(10): 2034-(2038).

DOI: 10.1021/nl0515753

Google Scholar

[15] W.Y. Huang, W. Qian, M.A. El-Sayed. Coherent: Vibrational Oscillation in GoldPrismatic Monolayer Periodic Nanoparticle Arrays, Nano. Lett., 2004, 4(9): 1741-1747.

DOI: 10.1021/nl048875p

Google Scholar

[16] C.F. Bohren, D.R. Huffman: Absorption and Scattering of Light by Small Particles. New York: John Wiley&Sons, 1983: 120-131.

Google Scholar

[17] U. Kreibig, M. Vollmer: Optical Properties of Metal Clusters, Heidelberg, Germany: Springer-Verlag, 1995, 25.

Google Scholar

[18] K. Okamoto, I. Niki, A. Shvartser, et al: Surface-plasmon-enhanced light emitters based on InGaN quantum wells, Nature materials, 2004, 3: 601-605.

DOI: 10.1038/nmat1198

Google Scholar

[19] Ekinci, Y. Solak, H.H., Loffler, J.F.: Plasmon resonances of aluminum nanoparticles and nanorods, Journal of Applied Physics  (Volume: 104 ,  Issue: 8 ).

Google Scholar

[20] George H. Chan, Jing Zhao, George C. Schatz, * and Richard P. Van Duyne* : Localized Surface Plasmon Resonance Spectroscopy of Triangular Aluminum Nanoparticles, J. Phys. Chem. C 2008, 112, 13958–13963.

DOI: 10.1021/jp804088z

Google Scholar