Synthesis of ZnO Microspheres with Different Morphologies and their Comparison of Gas Sensing Performance

Article Preview

Abstract:

ZnO microspheres with complete and perforated morphologies were synthesized by a simple solvothermal method via regulating solvent composition. Material characterization has included XRD, SEM, XPS, Raman spectrum and Brunauer–Emmet–Teller (BET) methods. The introduction of ethanol into the solvent resulted in the morphology change from complete to perforated spheres, meanwhile generated more surface adsorption sites and larger specific surface area as demonstrated by XPS and BET analysis. A possible formation mechanism of ZnO microspheres is proposed to explain the perforation development process. The gas sensing performances of the sensors prepared using the complete and perforated spheres were compared to reveal the positive impact of morphology change.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

30-35

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Ahmad, S. Yingying, A. Nisar, H. Sun, W. Shen, M. Weie and J. Zhu, Synthesis of hierarchical flower-like ZnO nanostructures and their functionalization by Au nanoparticles for improved photocatalytic and high performance Li-ion battery anodes, Journal of Materials Chemistry 21 (2011).

DOI: 10.1039/c1jm10720h

Google Scholar

[2] X. Lai, J. Li, B. A. Korgel, Z. Dong, Z. Li, F. Su, J. Du, D. Wang, General Synthesis and Gas-Sensing Properties of Multiple-Shell Metal Oxide Hollow Microspheres, Angewandte Chemie International Edition 50 (2011) 2738-2741.

DOI: 10.1002/anie.201004900

Google Scholar

[3] Z. Xu, Y. Cao, C. Li, P. Ma, X. Zhai, S. Huang, X. Kang, M. Shang, D. Yang, Y. Daiab and J. Lin, Urchin-like GdPO4 and GdPO4: Eu3+ hollow spheres – hydrothermal synthesis, luminescence and drug-delivery properties, Journal of Materials Chemistry 21 (2011).

DOI: 10.1039/c0jm03333b

Google Scholar

[4] X. B. Li, S. Y. Ma, F. M. Li, Y. Chen, Q. Q. Zhang , X. H. Yang, C. Y. Wang, J. Zhu, Porous spheres-like ZnO nanostructure as sensitive gas sensors for acetone detection, Materials Letters 100 (2013) 119-123.

DOI: 10.1016/j.matlet.2013.02.117

Google Scholar

[5] M. Agrawal, S. Gupta and M. Stamm, Recent developments in fabrication and applications of colloid based composite particles, Journal of Materials Chemistry 21 (2011) 615–627.

DOI: 10.1039/c0jm02631j

Google Scholar

[6] X. H. Yang, X. Q. Song and W. Yu, Preparation of Spinous ZrO2 Microspheres with Tunable Shell and Chamber Structure by Controlling Pollen as a Nanoparticles Reactor, Journal of Nanoscience and Nanotechnology 11 (2011) 10369–10373.

DOI: 10.1166/jnn.2011.5020

Google Scholar

[7] F. P. Dong, W. P. Guo, S. S. Park and C. S. Ha, Uniform and monodisperse polysilsesquioxane hollow spheres: synthesis from aqueous solution and use in pollutant removal, Journal of Materials Chemistry 21 (2011) 10744–10749.

DOI: 10.1039/c1jm11337b

Google Scholar

[8] H. Zhang, C. Xu, P. Sheng, Y. Chen, L. Yu, Q. Li, Synthesis of ZnO hollow spheres through a bacterial template method and their gas sensing properties, Sensors and Actuators B 181 (2013) 99– 103.

DOI: 10.1016/j.snb.2013.01.002

Google Scholar

[9] F. Meng, J. Yin, Y. Q. Duan, Z. H. Yuan, L. J. Bie, Co-precipitation synthesis and gas-sensing properties of ZnO hollow sphere with porous shell, Sensors and Actuators B 156 (2011) 703–708.

DOI: 10.1016/j.snb.2011.02.022

Google Scholar

[10] S. J. Kim, C. W. Na, I. S. Hwang, J. H. Lee, One-pot hydrothermal synthesis of CuO–ZnO composite hollow spheres for selective H2S detection, Sensors and Actuators B 168 (2012) 83– 89.

DOI: 10.1016/j.snb.2012.01.045

Google Scholar

[11] P. Ramasamy, J. Kim, Facile and fast synthesis of flower-like ZnO nanostructures, Materials Letters 93 (2013) 52–55.

DOI: 10.1016/j.matlet.2012.11.042

Google Scholar

[12] F. Q. He, Y. P. Zhao, Growth of ZnO nanotetrapods with hexagonal crown, Applied Physics Letters 88 (2006) 193113.

DOI: 10.1063/1.2202003

Google Scholar

[13] X. J. Wang, W. Wang, Y. L. Liu, Enhanced acetone sensing performance of Au nanoparticles functionalized flower-like ZnO, Sensors and Actuators B 168 (2012) 39–45.

DOI: 10.1016/j.snb.2012.01.006

Google Scholar

[14] Handbook of X-ray Photoelectron Spectroscopy, ed. G. E. Muilenbenger, Perkin-Elmer Corporation, Eden Prarie, MN, (1979).

Google Scholar

[15] M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, R. F. Huang, L. S. Wen, X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films, Applied Surface Science 158 (2000) 134–140.

DOI: 10.1016/s0169-4332(99)00601-7

Google Scholar

[16] N. Hongsith, E. Wongrat, T. Kerdcharoen, S. Choopun, Sensor response formula for sensor based on ZnO nanostructures, Sensors and Actuators B 144 (2010) 67–72.

DOI: 10.1016/j.snb.2009.10.037

Google Scholar

[17] S. Choopun, A. Tubtimtae, T. Santhaveesuk, S. Nilphai, E. Wongrat, N. Hongsith, Zinc oxide nanostructures for applications as ethanol sensors and dye-sensitized solar cells, Applied Surface Science 256 (2009) 998–1002.

DOI: 10.1016/j.apsusc.2009.05.139

Google Scholar

[18] I. S. Hwang and J. H. Lee, Gas Sensors Using Oxide Nanowire Networks: An Overview, Journal of Nanoengineering and Nanomanufacturing 1 (2011) 4–17.

DOI: 10.1166/jnan.2011.1002

Google Scholar