[1]
N. Muradov, T.N. Veziroglu, From hydrocarbon to hydrogen-carbon to hydrogen economy, Int. J. Hydrogen Energy. 30 (2005) 225–237.
DOI: 10.1016/j.ijhydene.2004.03.033
Google Scholar
[2]
T.V. Reshetenko, L.B. Avdeeva, Z.R. Ismagilov, A.L. Chuvilin, V.A. Ushakov, Carbon capacious Ni-Cu-Al2O3 catalysts for high-temperature methane decomposition, Appl. Catal. A 247 (2003) 51–63.
DOI: 10.1016/s0926-860x(03)00080-2
Google Scholar
[3]
A. Konieczny, K. Mondal, T. Wiltowski, P. Dydo, Catalyst development for thermocatalytic decomposition of methane to hydrogen, Int. J. Hydrogen Energy. 33 (2008) 264–72.
DOI: 10.1016/j.ijhydene.2007.07.054
Google Scholar
[4]
V.V. Chesnokov, A.S. Chichkan, Production of hydrogen by methane catalytic decomposition over Ni-Cu-Fe/Al2O3 catalyst, Int. J. Hydrogen Energy. 34 (2009) 2979–2985.
DOI: 10.1016/j.ijhydene.2009.01.074
Google Scholar
[5]
H.F. Abbas, W.M.A.W. Daud, Hydrogen production by thermo-catalytic decomposition of methane using a fixed bed activated carbon in a pilot scale unit: apparent kinetic, deactivation and diffusional limitation studies, Int. J. Hydrogen Energy. 35 (2010).
DOI: 10.1016/j.ijhydene.2010.08.036
Google Scholar
[6]
P. Jana, V.A. de la Pen˜a O'Shea, J.M. Coronado, D.P. Serrano, Co-production of graphene sheets and hydrogen by decomposition of methane using cobalt based catalysts, Ener. Environ. Sci. 4 (2011) 778–783.
DOI: 10.1039/c0ee00490a
Google Scholar
[7]
I. Suelves, M.J. La´zaro, R. Moliner, B.M. Corbella, J.M. Palacios, Hydrogen production by thermo catalytic decomposition of methane on Ni-based catalysts: influence of operating conditions on catalyst deactivation and carbon characteristics, Int. J. Hydrogen Energy. 30 (2005).
DOI: 10.1016/j.ijhydene.2004.10.006
Google Scholar
[8]
J.L. Pinilla, R. Moliner, I. Suelves, M.J. La´zaro, Y. Echegoyen, J.M. Palacios, Production of hydrogen and carbon nanofibers by thermal decomposition of methane using metal catalysts in a fluidized bed reactor, Int. J. Hydrogen Energy. 32 (2007).
DOI: 10.1016/j.ijhydene.2007.08.013
Google Scholar
[9]
R. Moliner, Y. Echegoyen, I. Suelves, M.J. La´zaro, J.M. Palacios, Ni-Mg and Ni-Cu-Mg catalysts for simultaneous production of hydrogen and carbon nanofibers: The effect of calcination temperature, Int. J. Hydrogen Energy. 33 (2008) 1719–1728.
DOI: 10.1016/j.ijhydene.2008.01.005
Google Scholar
[10]
J.L. Pinilla, I. Suelves, M.J. La´zaro, R. Moliner, J.M. Palacios Activity of NiCuAl catalyst in methane decomposition studied using a thermobalance and the structural changes in the Ni and the deposited carbon, Int. J. Hydrogen Energy. 33 (2008).
DOI: 10.1016/j.ijhydene.2008.02.041
Google Scholar
[11]
R. Aiello, J.E. Fiscus, H.Z. Loye, M.D. Amiridis, Hydrogen production via the direct cracking of methane over Ni/SiO2: catalyst deactivation and regeneration, Appl. Catal. A 192 (2000) 227–234.
DOI: 10.1016/s0926-860x(99)00345-2
Google Scholar
[12]
S.P. Chai, S.H.S. Zein, A.R. Mohamed, The effect of reduction temperature on Co-Mo /Al2O3 catalysts for carbon nanotubes formation, Appl. Catal. A 326 (2007) 173–179.
DOI: 10.1016/j.apcata.2007.04.020
Google Scholar