Review on Pyrolysis of Hardwood Residue to Biofuel

Article Preview

Abstract:

In Malaysia, approximately 7 million tonne/year of rubber wood waste and 5 million tonne/year of acacia wood waste were generated in 2011. These hardwood residues could be utilized to produce biofuel through pyrolysis process. The aims of the paper are to study the fluidized bed pyrolysis system, determine the properties of pyrolytic bio-oil, and highlight the effect of biomass type, size and pyrolysis temperature on pyrolytic products distribution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

714-717

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] MTIB, Malaysian Timber Statistics 2009-2011, Malaysian Timber Industry Board (2012).

Google Scholar

[2] FPD, Forest Plantation, Forest Plantation Development Sdn Bhd (2010).

Google Scholar

[3] M.V.D. Velden, J. Baeyans, B. Janssens, R. Dewil, Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction, Renewable Energy 35 (2010) 232-242.

DOI: 10.1016/j.renene.2009.04.019

Google Scholar

[4] A.V. Bridgwater, Review of fast pyrolysis of biomass and product upgrading, Biomass Bioenergy 38 (2012) 68-94.

DOI: 10.1016/j.biombioe.2011.01.048

Google Scholar

[5] J. Lehto, Y. Solantausta, M. Kytö, D. Chiaramonti, Review of fuel oil quality and combustion of fast pyrolysis bio-oils from lignocellulosic biomass, Applied Energy 116 (2014) 178-190.

DOI: 10.1016/j.apenergy.2013.11.040

Google Scholar

[6] A. Oasmaa, C. Peacocke, A guide to physical property characterisation of biomass-derived fast pyrolysis liquids. VTT Publications (2010).

Google Scholar

[7] D. Mohan, C.U. Pittman, P.H. Steele, Pyrolysis of wood/biomass for bio-oil: A critical review, Energy Fuels 20 (2006) 848-890.

DOI: 10.1021/ef0502397

Google Scholar

[8] S. Czernik, A.V. Bridgwater, Overview of applications of biomass fast pyrolysis oil, Energy Fuels 18 (2004) 590-598.

DOI: 10.1021/ef034067u

Google Scholar

[9] H.S. Heo, H.J. Park, C. Ryu, D.J. Suh, S.S. Kim, Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed, Bioresoure Technology 101 (2010) 91-96.

DOI: 10.1016/j.biortech.2009.06.003

Google Scholar

[10] Z.J. Lu, Y.K. Park, Pyrolysis oil from fast pyrolysis of maize stalk, Journal of Applied Pyrolysis 83 (2008) 206-212.

DOI: 10.1016/j.jaap.2008.08.005

Google Scholar

[11] N. Ali, Effect of operating conditions and fractional condensation on pyrolytic products, Journal of the Japan Institute of Energy, 92 (2013) 1014-1020.

DOI: 10.3775/jie.92.1014

Google Scholar

[12] S. Yaman, Pyrolysis of biomass to produce fuels and chemical feedstocks, Energy Conversion and Management 45 (2004) 651-671.

DOI: 10.1016/s0196-8904(03)00177-8

Google Scholar

[13] K.G. Lim, R. Egashira, Pyrolysis and characterization of the products for recycle of rubberwood residues, Journal of Applied Sciences 5 (2005), 104-107.

Google Scholar

[14] M. Amutio, G. Lopez, J. Alvarez, M. Olazar, J. Bilbao, Flash pyrolysis of forestry residues from the Portuguese Central Inland Region, Bioresource Technology 129 (2013) 512-518.

DOI: 10.1016/j.biortech.2012.11.114

Google Scholar

[15] J. Shen, X.S. Wang, D. Mourant, M.J. Rhodes, Effects of particle size on the fast pyrolysis of oil mallee woody biomass, Fuel 88 (2009) 1810-1817.

DOI: 10.1016/j.fuel.2009.05.001

Google Scholar

[16] S.S. Liaw, Z. Wang, P. Ndegwa, C. Frear, M.G. Perez, Effect of pyrolysis temperature on the yield and properties of bio-oils obtained from the auger pyrolysis of Douglas Fir wood, Journal of Analytical and Applied Pyrolysis 93 (2012) 52-62.

DOI: 10.1016/j.jaap.2011.09.011

Google Scholar