Mechanical Pretreatment of Lignocellulosic Biomass for Biofuel Production

Article Preview

Abstract:

Lignocellulosic biomass (LB) sources which are readily available in abundance are widely considered as a potential future sustainable raw materials for biofuel production. Typically, biofuel production involved several chemical and mechanical steps consisting of pretreatment, hydrolysis, fermentation and separation. The pretreatment step is considered as one of the most vital part of the whole processing scheme due to the impact it had on the efficiency of the subsequent processing steps. In this study we reviewed the mechanical pretreatment of LB focusing mainly on the size reduction technique by grinding process. Grinding is one of the proven preliminary pretreatment techniques employed in biomass conversion to liquid biofuel. However, this technique is known to be costly due to high energy consumption. In view of this, an efficient and cost effective pretreatment technology is required in order for the biofuel to be produced at a competitive level. At the same time, the impact on environment caused by the conventional pretreatment processes can be minimized. Thus, a new combined chemical-mechanical pretreatment is considered whereby a green ionic liquid (IL) solvent is introduced.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

838-841

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Parveen K., Barrett D.M., Delwiche M.J., and P. Stroeve, Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. & Eng. Chem. Research. 48: 3713-3729 (2009).

DOI: 10.1021/ie801542g

Google Scholar

[2] Bian J., Peng F., X.P. Peng, Peng X. Xiao, Peng P., Xu F., R.C. Sun., Effect of [Emim]Ac pretreatment on the structure and enzymatic hydrolysis of sugarcane bagasse cellulose. Carb. Poly., 100: 211-217 (2013).

DOI: 10.1016/j.carbpol.2013.02.059

Google Scholar

[3] Lopes A.M. da Costa, Joao K.G., Rubik D.F., Bogel-Lukasik E., Duarte L.C., Andreaus J., Bogel-Lukasik R., Pre-treatment of lignocellulosic biomass using ionic liquids: Wheat straw fractionation. Bioresource Technology, 142: 198–208 (2013).

DOI: 10.1016/j.biortech.2013.05.032

Google Scholar

[4] Mood S. H., Golfeshan A. H., Tabatabaei M., et al., Comparison of different ionic liquids pretreatment for barley straw enzymatic saccharification. Biotech, 3: 399–406 (2013).

DOI: 10.1007/s13205-013-0157-x

Google Scholar

[5] Perez-Cantu L., Schreiber A., Schütt F., et al., Comparison of pretreatment methods for rye straw in the second generation biorefinery: Effect. Biore. Tech., 142: 428–435 (2013).

DOI: 10.1016/j.biortech.2013.05.054

Google Scholar

[6] Azmi I.S., Azizan A., Ruzitah M.S., Jalil R., Sihab A.L., Ubong S., Idris N., Biomaterials Availability: Potential for Bioethanol Production. Adv. M. Res., 701, 243-248 (2013).

DOI: 10.4028/www.scientific.net/amr.701.243

Google Scholar

[7] Taherzadeh M.J. and Karimi K., Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: A review. Bioresources, 2(4): 707-738 (2007).

Google Scholar

[8] Luo J., Cai M. and Gu T., Pretreatment of lignocellulosic biomass using green ionic liquids. Green Biomass Pretreatment for Biofuels Production, 127-153 (2013).

DOI: 10.1007/978-94-007-6052-3_6

Google Scholar

[9] D. Silva G.G., Couturier M., Berrin J.G., Buleon A., Rouau X., Effects of grinding processes on enzymatic degradation of wheat straw. Bioresource Technology, 103: 192–200.

DOI: 10.1016/j.biortech.2011.09.073

Google Scholar

[10] Sarkar N., Ghosh S.K., Bannerjee S., Aikat K., (2012). Bioethanol production from agricultural wastes: An overview. Renewable Energy, 37: 19-27 (2012).

DOI: 10.1016/j.renene.2011.06.045

Google Scholar

[11] Vidal B.C., Dien, B., Ting, K., Singh, V., Influence of feedstock particle size on lignocellulose conversion – a review. Appl. Biochem. Biotechnol, 164: 1405–1421 (2011).

DOI: 10.1007/s12010-011-9221-3

Google Scholar

[12] D. Silva A. S, Inoue H., Endo T., et al., Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. Bio Tech, 101(19): 7402-7409 (2010).

DOI: 10.1016/j.biortech.2010.05.008

Google Scholar

[13] Man S., Tabil L.G., Sokhansanj S., Grinding performance and physical properties of wheat and barley straws, corn stover and switchgrass. Biomass and Bioenergy, 27: 339–352 (2004).

DOI: 10.1016/j.biombioe.2004.03.007

Google Scholar

[14] Zhang Q., Zhang P., Pei Z.J., Wang D., Relationships between cell biomass particle size and enzymatic hydrolysis sugar yield: Analysis. Rene. Ener., 60: 127–136 (2013).

DOI: 10.1016/j.renene.2013.04.012

Google Scholar

[15] Lopez Abelairas M., Lu Chau T.A., Lema J.M., Enhanced saccharification of biologicall pretreated wheat straw for ethanol production. App. Bioche. Bio., 169(4): 1147-59 (2013).

DOI: 10.1007/s12010-012-0054-5

Google Scholar

[16] Kim S., Park J.M., Seo J.W., Kim C.H., Sequential acid-/alkali pretreatment of empty fruit bunch fiber. Biore. Tech., 109: 229-233 (2012).

DOI: 10.1016/j.biortech.2012.01.036

Google Scholar

[17] Ballesteros I., Negro M. J, Olivia J.M., Cabanas A., et al., Ethanol pro from steam-explosion pretreated wheat straw. Appl. Bioche. Bio., 129-132: 496-508 (2006).

DOI: 10.1385/abab:130:1:496

Google Scholar

[18] Azizan A., Azmi I. S., Mohd Safaai N. S., Mohd Salleh R., Jalil R., et al., Green engineering technology in bioethanol. IEEE Symposium on Humanities, Science and Engineering 2013 (SHUSER), Hard Rock Hotel, 23 - 25 June, Penang, Malaysia (2013).

Google Scholar

[19] Tabil L., Adapa P. and Kashaninejad M., Biomass feedstock pre-processing – part 1: pretreatment, biofuel's engineering process technology. Dr. Marco Aurelio Dos Santos Bernardes (Ed. ), ISBN: 978-953-307-480-1 (2011).

DOI: 10.5772/17086

Google Scholar

[20] Jayasundara C.T., Yang R.Y., Yu A.B., Effect of the size of media on grinding performance in stirred mills, Minerals Engineering, 33: 66–71 (2012).

DOI: 10.1016/j.mineng.2011.10.012

Google Scholar

[21] Barakat A., Chuetor S., Monlau F., Solhy A., Rouau X., Eco-friendly dry chemo-mechanical pretreatments of lignocellulosic biomass: Impact on energy and yield of the enzymatic hydrolysis. Applied Energy. 113: 97–105 (2014).

DOI: 10.1016/j.apenergy.2013.07.015

Google Scholar

[22] Mani S., Tabil L.G., Sokhansanj S., Grinding performance and physical properties of wheat & barley straws, corn stover and switch grass. Biomass and Bioenergy, 27: 339–352 (2004).

DOI: 10.1016/j.biombioe.2004.03.007

Google Scholar

[23] Thomas M., Vrij M., Zandstra T., Van der Poel A.F.B., Grinding performances of wheat, maize and soybeans in a multicracker system. Ani. F. Sci. & Tech., 175(3-4): 182-192 (2012).

DOI: 10.1016/j.anifeedsci.2012.05.002

Google Scholar

[24] Zhao D., Li H., Zhang J., Fu L., Liu M., Fu J., Ren P., Dissolution of cellulose in phosphate-based ionic liquids. Carbohydrate Polymers, 87: 1490-1494 (2012).

DOI: 10.1016/j.carbpol.2011.09.045

Google Scholar

[25] Haykir N.I., Bahcegul E., Bicak N., Bakir U., Pretreatment of cotton stalk with ionic liquids including 2-hydroxy ethyl ammonium formate to enhance biomass digestibility. Industrial Crops and Products, 41: 430-436 (2013).

DOI: 10.1016/j.indcrop.2012.04.041

Google Scholar

[26] C. Kamarludin S.N., Ubong S., Idris N., Azmi I.S., et al., Imidazolium-based ionic liquid dissolution influence on crystalinity of oil palm frond, trunk and elephant grass lignocellulosic biomass. ICKEM 2014, Bali, Indonesia [ACCEPTED] (2013).

DOI: 10.4028/www.scientific.net/amr.911.307

Google Scholar