Bistatic LIDAR System for the Characterisation of Aviation-Related Pollutant Column Densities

Abstract:

Article Preview

In this paper, we investigate an innovative application of Light Detection and Ranging (LIDAR) technology for the aviation-related pollutant measurements. The proposed measurement technique is conceived for high-resolution characterisation in space and time domains of aviation-related pollutant gases. The system performs Integral Path Differential Absorption (IPDA) measurement in a bistatic LIDAR measurement setup. The airborne component consists of a tuneable Near Infrared (NIR) laser emitter installed on an Unmanned Aircraft (UA) and the ground subsystem is composed by a target reference surface (calibrated for reflectance) and a differential transmittance measuring device based on a NIR Camera calibrated for radiance. The specific system implementation for Carbon Dioxide (CO2) measurement is discussed. A preliminary assessment of the error figures associated with the proposed system layout is performed.

Info:

Periodical:

Edited by:

R. Varatharajoo, F.I. Romli, K.A. Ahmad, D.L. Majid and F. Mustapha

Pages:

257-262

Citation:

A. Gardi et al., "Bistatic LIDAR System for the Characterisation of Aviation-Related Pollutant Column Densities", Applied Mechanics and Materials, Vol. 629, pp. 257-262, 2014

Online since:

October 2014

Export:

Price:

$38.00

[1] C. D. Rodgers, Inverse methods for atmospheric sounding: Theory and practice, vol. 2, World scientific Singapore, (2000).

[2] R. Sabatini and M. A. Richardson, RTO AGARDograph AG-300 Vol. 26: Airborne Laser Systems Testing and Analysis, NATO Science and Technology Organization, (2010).

[3] D. Müller, F. Wagner, U. Wandinger, A. Ansmann, M. Wendisch, D. Althausen, et al., Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: Experiment, Applied Optics39 (2000) 1879-1892.

DOI: https://doi.org/10.1364/ao.39.001879

[4] M. A. Krainak, A. E. Andrews, G. R. Allan, J. F. Burris, H. Riris, X. Sun, et al., Measurements of atmospheric CO2 over a horizontal path using a tunable-diode-laser and erbium-fiber-amplifier at 1572 nm, in proceedings of Conference on Lasers and Electro-Optics 2003 (CLEO '03), Baltimore, MD, USA, 2003, pp.878-881.

[5] I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, K. Franke, and D. N. Whiteman, Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution, Applied Optics43 (2004) 1180-1195. DOI: 10. 1029/2003JD003538.

DOI: https://doi.org/10.1364/ao.43.001180

[6] H. Riris, J. Abshire, G. Allan, J. Burris, J. Chen, S. Kawa, et al., A laser sounder for measuring atmospheric trace gases from space, in proceedings of SPIE 6750, Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing III, Florence, Italy, 2007. DOI: 10. 1117/12. 737607.

DOI: https://doi.org/10.1117/12.737607

[7] G. R. Allan, H. Riris, J. B. Abshire, X. Sun, E. Wilson, J. F. Burris, et al., Laser sounder for active remote sensing measurements of CO2 concentrations, in proceedings of IEEE Aerospace Conference 2008 (AC2008), Big Sky, MT, USA, 2008, pp.1-7.

DOI: https://doi.org/10.1109/aero.2008.4526387

[8] A. Amediek, A. Fix, G. Ehret, J. Caron, and Y. Durand, Airborne lidar reflectance measurements at 1. 57 μm in support of the A-SCOPE mission for atmospheric CO2, Atmospheric Measurement Techniques Discussions2 (2009) 1487-1536.

DOI: https://doi.org/10.5194/amtd-2-1487-2009

[9] J. B. Abshire, H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, et al., Pulsed airborne lidar measurements of atmospheric CO2 column absorption, Tellus, Series B: Chemical and Physical Meteorology62 (2010).

DOI: https://doi.org/10.1111/j.1600-0889.2010.00502.x

[10] I. Harada, Y. Yoshii, Y. Kaba, H. Saito, Y. Goto, I. Alimuddin, et al., Measurement of Volcanic SO2 Concentration in Miyakejima Using Differential Optical Absorption Spectroscopy (DOAS), Open Journal of Air Pollution2 (2013).

DOI: https://doi.org/10.4236/ojap.2013.22006

[11] R. Sabatini, Tactical Laser Systems Performance Analysis in Various Weather Conditions, in, RTO-MP-001 - E-O Propagation, Signature and System Performance under Adverse Meteorological Conditions Considering Out of Area Operations, Sensors and Electronics Technology (SET) panel, NATO Research and Technology Organization (RTO), Naples, Italy, 1998, pp.29-1.

[12] R. Sabatini, F. Guercio, and S. Vignola, Airborne Laser Systems Performance Analysis and Mission Planning, in, RTO-MP-046 - Advanced Mission Management and Systems Integration Technologies for Improved Tactical Operations, Systems Concepts and Integration (SCI) panel, NATO Research and Technology Organization (RTO), Florence, Italy, (1999).

[13] R. Sabatini, F. Guercio, G. Campo, and A. Marciante, Simulation and Flight Testing for Integration of a Laser Designation Pod and Laser Guided Bombs on Italian TORNADO-IDS, in, RTO-MP-083 - Integration of Simulation with System Testing, Systems Concepts and Integration (SCI) panel, NATO Research and Technology Organization (RTO), Toulouse, France, (2001).

[14] R. Sabatini and M. A. Richardson, A new approach to eye-safety analysis for airborne laser systems flight test and training operations, Optics and Laser Technology35 (2003) 191-198. DOI: 10. 1016/S0030-3992(02)00171-8.

DOI: https://doi.org/10.1016/s0030-3992(02)00171-8

[15] R. Sabatini and M. A. Richardson, Innovative methods for planetary atmospheric sounding by lasers, in proceedings of AIAA Space 2008 Conference, San Diego, CA, USA, 2008. DOI: 10. 2514/6. 2008-7670.

DOI: https://doi.org/10.2514/6.2008-7670

[16] R. Sabatini, M. A. Richardson, H. Jia, and D. Zammit-Mangion, Airborne laser systems for atmospheric sounding in the near infrared, in proceedings of SPIE 8433, Laser Sources and Applications, Photonics Europe 2012, Brussels, Belgium, 2012. DOI: 10. 1117/12. 915718.

DOI: https://doi.org/10.1117/12.915718

[17] R. Sabatini and M. A. Richardson, Novel atmospheric extinction measurement techniques for aerospace laser system applications, Infrared Physics and Technology56 (2013) 30-50. DOI: 10. 1016/j. infrared. 2012. 10. 002.

DOI: https://doi.org/10.1016/j.infrared.2012.10.002

[18] A. Gardi and R. Sabatini, Unmanned aircraft bistatic lidar for CO2 colum density determination, in proceedings of IEEE Metrology for Aerospace Conference 2014, Benevento, Italy, (2014).

DOI: https://doi.org/10.1109/metroaerospace.2014.6865892

[19] F. G. Gebhardt, High Power Laser Propagation, Applied Optics15 (1976) 1479-1493.

[20] J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, et al., Airborne measurements of CO2 column concentration and range using a pulsed direct-detection IPDA lidar, Remote Sensing6 (2013).

DOI: https://doi.org/10.3390/rs6010443

[21] J. B. Abshire, H. Riris, C. J. Weaver, J. Mao, G. R. Allan, W. E. Hasselbrack, et al., Airborne measurements of CO2 column absorption and range using a pulsed direct-detection integrated path differential absorption lidar, Applied Optics52 (2013).

DOI: https://doi.org/10.1364/ao.52.004446

[22] R. Sabatini, A. Gardi, S. Ramasamy, and M. A. Richardson, A laser obstacle warning and avoidance system for manned and unmanned aircraft, in proceedings of IEEE Metrology for Aerospace Conference 2014, Benevento, Italy, (2014).

DOI: https://doi.org/10.1109/metroaerospace.2014.6865998

[23] R. Sabatini, A. Gardi, and S. Ramasamy, A Laser Obstacle Warning and Avoidance System for Unmanned Aircraft Sense-and-Avoid, Applied Mechanics and Materials(2014).

DOI: https://doi.org/10.4028/www.scientific.net/amm.629.355

[24] R. Sabatini, High Precision DGPS and DGPS/INS Positioning for Flight Testing, in, RTO-MP-043 - 6th Saint Petersburg International Conference on Integrated Navigation Systems, CSRI Elektropribor, / AIAA / Systems Concepts and Integration (SCI) panel, NATO Research and Technology Organization (RTO), Saint Petersburg, Russia, 1999, pp.18-1.

DOI: https://doi.org/10.17285/0869-7035.2016.24.1.088-099

[25] R. Sabatini and G. B. Palmerini, RTO AGARDograph AG-160 Vol. 21: Differential Global Positioning System (DGPS) for Flight Testing, NATO Science and Technology Organization, (2008).

[26] S. Ramasamy, R. Sabatini, A. Gardi, and Y. Liu, Novel flight management system for real-time 4-dimensional trajectory based operations, in proceedings of AIAA Guidance, Navigation, and Control Conference 2013 (GNC2013), Boston, MA, USA, 2013. DOI: 10. 2514/6. 2013-4763.

DOI: https://doi.org/10.2514/6.2013-4763

[27] A. Gardi, R. Sabatini, S. Ramasamy, and K. de Ridder, 4-Dimensional Trajectory Negotiation and Validation System for the Next Generation Air Traffic Management, in proceedings of AIAA Guidance, Navigation, and Control Conference 2013 (GNC2013), Boston, MA, USA, 2013. DOI: 10. 2514/6. 2013-4893.

DOI: https://doi.org/10.2514/6.2013-4893