Estimation Methods of a Joint Model Based on Proportional Intensity Function and Proportional Hazard Function

Article Preview

Abstract:

Recurrent events data refers to the observation of individuals, which contains the recurrent event time of interest. This paper mainly discusses a joint model when the end time is a multiplicable hazard function and the recurrent event process is a multiplicable intensity function. Based on the likelihood method, Delta method, U-statistic method and the idea of general estimation equation, the estimation of unknown parameters and unknown functions in the model is provided. It provides a new method of parameter estimation for the statistic analysis of recurrent events data.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

27-30

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.R. Cox: Journal of the Royal Statistical Society Vol. 34 (1972), pp.187-220.

Google Scholar

[2] D.Y. Lin, Z. Ying: Biometrika Vol. 81 (1994), pp.61-71.

Google Scholar

[3] R.L. Prentice, B.J. Williams, A.V. Peterson: Biometrika Vol. 68 (1981), pp.373-379.

Google Scholar

[4] P.K. Andersen, R.D. Gill: The Annals of Statistics Vol. 10 (1982), pp.1100-1120.

Google Scholar

[5] G.G. Nielsen, R.D. Gill, P.K. Andersen, T.I.A. Sorensen: Scand. J. Stat Vol. 19 (1992), pp.25-43.

Google Scholar

[6] M.S. Pepe, J. Cai: J. Amer. Statist. Assoc Vol. 88 (1993), pp.811-820.

Google Scholar

[7] D.Y. Lin, L.J. Wei, I. Yang, Z. Ying: J. R. Statist. Statist. Soc, B Vol. 62 (2000), pp.711-730.

Google Scholar

[8] R.J. Cook: The Statistical Analysis of Recurrent Events (Springer, New York, 2007).

Google Scholar

[9] T. Lancaster, O. Intrator: J. Amer. Statist. Assoc Vol. 93 (1998), pp.46-53.

Google Scholar

[10] Y. Huang, M.C. Wang: J. Amer. Statist. Assoc Vol. 98 (2002), pp.663-670.

Google Scholar

[11] D. Ghosh, D.Y. Lin: Biometrics Vol. 59 (2003), pp.877-885.

Google Scholar

[12] C.Y. Huang, M.C. Wang: J. Amer. Statist. Assoc Vol. 99 (2004), pp.1153-1165.

Google Scholar

[13] D. Zeng, D.Y. Lin: Biometrics Vol. 65 (2009), pp.746-752.

Google Scholar

[14] V. Rondeau, et al: Biostatistics Vol. 8 (2007), pp.708-721.

Google Scholar