[1]
S. W. Golomb, G. Gong. Signal Design for Good Correlation: For Wireless Communication, Cryptography and Radar. (2005).
DOI: 10.1017/cbo9780511546907
Google Scholar
[2]
J.H. Chung, K. Yang. New Classes of Optimal Low-Hit-Zone Frequency-Hopping Sequence Sets by Cartesian product, IEEE Transactions on Information Theory, vol. 59, no. 1 (2013), pp.726-732.
DOI: 10.1109/tit.2012.2213065
Google Scholar
[3]
G. Ge, R. Fuji-Hara and Y. Miao, Further combinatorial constructions for optimal frequency hopping sequences, J. Combin. Theory Ser. A, 113 (2006), 1699-1718.
DOI: 10.1016/j.jcta.2006.03.019
Google Scholar
[4]
Peng D. Y and Fan P. Z. Lower bounds on the Hamming auto and cross correlations of frequency hopping sequences [J], IEEE Trans. Inf. Theory, 50(2004): 2149-2154.
DOI: 10.1109/tit.2004.833362
Google Scholar
[5]
Peng D Y, Peng T, and Fan P Z. Generalized class of cubic frequency-hopping sequences with large family size [J]. IEE Proceedings on Communications, 152(2005): 897-902.
DOI: 10.1049/ip-com:20045005
Google Scholar
[6]
Peng D Y, Peng T, and Tang X H, et al. A class of optimal frequency hopping sequences based upon the theory of power residues[C]. SETA 2008, Proceedings of the 5th international conference on Sequences and Their Applications, Lexington, KY, USA, September 14-18, 2008, 5203: 188-196.
DOI: 10.1007/978-3-540-85912-3_18
Google Scholar
[7]
Ren WenLi, FU Fang Wei, ZHOU Zhengchun. On the Average Partial Hamming Correlation of Frequency Hop- ping Sequences [J]. IEICE Trans. Fundamentals, vol. e96-A, NO. 5 (2013), pp.19-23.
DOI: 10.1587/transfun.e96.a.1010
Google Scholar