Simulation of Cold-Formed Steel Beams in Global and Distortional Buckling

Article Preview

Abstract:

This article provides the numerical elastic buckling analysis of simply supported cold-formed lipped channels subjected to pure bending. A methodology for computing simulation of a new type of thin-walled thermo-profile (reticular-stretched) is developed. For flexural elements buckling modes and values of critical force are calculated. FE simulation evaluates the influence of web height and span on the critical load and buckling modes for cold formed beams of different lengths.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1037-1041

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.A. Rybakov, O.S. Gamayunova. The stress-strain state of frame constructions' elements from thin-walled cores, Construction of Unique Buildings and Structures, 7(12) (2013) pp.79-123.

Google Scholar

[2] D.S. Shatov. Finite element modelling of open section perforated thin-walled studs made from thin-walled steel profiles, Magazine of civil engineering, 3(21) (2011) pp.32-35.

Google Scholar

[3] A.O. Gordeeva, N.I. Vatin. Finite element calculation model of thin-walled cold-formed profile in software package SCAD Office, Magazine of civil engineering, 3(21) (2011) pp.36-46.

Google Scholar

[4] A.V. Teplykh. Application of shell and solid elements in the analysis of building steel designs with software SCAD and Nastran accounting for geometrical and physical nonlinearity, Magazine of civil engineering, 3(21) (2011) pp.4-20.

Google Scholar

[5] V.V. Lalin, V.A. Rybakov. The finite elements for design of building walling made of thin-walled beams, Magazine of civil engineering, 8(26) (2011) pp.69-80.

DOI: 10.5862/mce.26.11

Google Scholar

[6] T.V. Nazmeeva. Bearing capacity of compressed continuous and perforated thin-walled steel members of C-shaped cold-formed profiles, Magazine of civil engineering, 5(40) (2013) pp.44-51.

DOI: 10.5862/mce.40.5

Google Scholar

[7] E.N. Zhmarin. International association of light-gauge steel construction, Construction of Unique Buildings and Structures, 2 (2012) pp.27-30.

Google Scholar

[8] A.R. Tusnin. Use thin-walled finite element in calculating chase an open profile, Nauchno-tekhnicheskiy vestnik Povolzhya, 6 (2012) pp.405-408.

Google Scholar

[9] A.R. Tusnin, M. Prokic. Resistance of I-beams in Warping Torsion with Account for the Development of Plastic Deformations, Proceedings of Moscow State University of Civil Engineering, 1 (2014) pp.75-82.

Google Scholar

[10] N.I. Vatin, A.S. Sinelnikov. Strength and Durability of Thin-Walled Cross-Sections, Design, Fabrication and Economy of Metal Structures. International Conference Proceedings, 2013, Miskolc, Hungary, April 24-26, Miskolc, 2013, pp.165-170.

DOI: 10.1007/978-3-642-36691-8_25

Google Scholar

[11] N.I. Vatin, E.N. Popova. Termoprofil v legkikh stalnykh stroitelnykh konstruktsiakh, St. - Petersburg: Izd-vo SPbGPU, 2006, 63 p.

Google Scholar

[12] V.V. Jurchenko. Designing of steel frameworks from thin-walled cold-formed profiles in SCAD Office, Magazine of Civil Engineering, 8 (2010) pp.38-46.

Google Scholar

[13] S.V. Salamakhin, A.S. Sinelnikov. Modeling node screwing thin perforated steel profiles by finite element method, Construction of Unique Buildings and Structures, 4(9) (2013) pp.53-63.

Google Scholar

[14] A.V. Perelmuter, E.Z. Kriksunov, V.S. Karpilovskii, A.A. Maliarenko. Integrirovannaia sistema dlia rascheta i proektirovaniia nesushchikh konstruktsii zdanii i sooruzhenii SCAD Office. Novaia versiia, novye vozmozhnosti, Magazine of Civil Engineering, 2 (2009).

Google Scholar

[15] N.I. Vatin, V.V. Volodin, E.A. Zolotareva, K.V. Petrov, E.N. Zhmarin. Rekonstruktsiya krysh Sankt-Peterburga na osnove legkikh stalnykh tonkostennykh konstruktsiy i antiobledenitelnoy sistemy, Magazine of civil engineering, 2(12) (2010) pp.59-64.

Google Scholar

[16] N.I. Vatin, A.S. Sinelnikov. Long span footway bridges: cold formed steel cross-section, Construction of Unique Buildings and Structures, 1 (2012) pp.47-53.

Google Scholar

[17] N. Vatin, Ja. Havula, L. Martikainen, A. Sinelnikov, A. Orlova, S. Salamakhin. Thin-walled cross-sections and their joints: tests and FEM-modelling, Advanced Materials Research, 945-949 (2014) pp.1211-1215.

DOI: 10.4028/www.scientific.net/amr.945-949.1211

Google Scholar

[18] N.I. Vatin, T. Nazmeeva, R. Guslinscky. Problems of cold-bent notched C-shaped profile members, Advanced Materials Research, 941-944 (2014) pp.1871-1875.

DOI: 10.4028/www.scientific.net/amr.941-944.1871

Google Scholar

[19] X.T. Chu, R. Kettle, L. Li. Lateral-torsion buckling analysis of partial-laterally restrained thin-walled channel-section beams, Journal of Constructional Steel Research, 60(8) (2014) pp.1159-1175.

DOI: 10.1016/j.jcsr.2003.11.001

Google Scholar

[20] C. Yu, B.W. Schafer. Simulation of cold-formed steel beams in local and distortional buckling with applications to the direct strength method, Journal of Constructional Steel Research, 63(5) (2007) pp.581-590.

DOI: 10.1016/j.jcsr.2006.07.008

Google Scholar

[21] S. Niu, K.J. Rasmussen, F. Fan. Distortional–global interaction buckling of stainless steel C-beams: Part II—Numerical study and design, Journal of Constructional Steel Research, 96 (2014) pp.40-53.

DOI: 10.1016/j.jcsr.2014.01.008

Google Scholar

[22] M.R. Haidarali, D.A. Nethercot. Finite element modelling of cold-formed steel beams under local buckling or combined local/distortional buckling, Thin-Walled Structures, 49(12) (2011) pp.1554-1562.

DOI: 10.1016/j.tws.2011.08.003

Google Scholar

[23] M.M. Pastor, F. Roure. Open cross-section beams under pure bending II. Finite element simulation, Thin-walled structures, 47(5) (2009) pp.514-521.

DOI: 10.1016/j.tws.2008.10.021

Google Scholar

[24] L.Y. Li. Lateral-torsional buckling of cold-formed zed-purlins partial-laterally restrained by metal sheeting, Thin-walled structures, 42(7) (2004) pp.995-1011.

DOI: 10.1016/j.tws.2004.03.005

Google Scholar

[25] H.G. Luo, Y.J. Guo, S.C. Ma. Distortional buckling of thin-walled inclined lipped channel beams bending about the minor axis, Journal of Constructional Steel Research, 67(12) (2011) pp.1884-1889.

DOI: 10.1016/j.jcsr.2011.05.011

Google Scholar

[26] N.D. Kankanamge, M. Mahendran. Behaviour and design of cold-formed steel beams subject to lateral-torsional buckling, Thin-Walled Structures, 51 (2012) pp.25-38.

DOI: 10.1016/j.tws.2011.10.012

Google Scholar

[27] Y.L. Pi, B.M. Put, N.S. Trahair. Lateral buckling strengths of cold-formed Z-section beams, Thin-walled structures, 34(1) (1999) pp.65-93.

DOI: 10.1016/s0263-8231(99)00004-x

Google Scholar

[28] S.S. Cheng, B. Kim, L.Y. Li. Lateral-torsional buckling of cold-formed channel sections subject to combined compression and bending, Journal of Constructional Steel Research, 80 (2013) pp.174-180.

DOI: 10.1016/j.jcsr.2012.07.026

Google Scholar

[29] M.R. Garifullin, N.I. Vatin. Buckling analysis of thin-walled cold-formed beams — short review, Construction of Unique Buildings and Structures, 6(21) (2014) pp.32-57.

Google Scholar

[30] E.L. Airumian. Osobennosti rascheta konstruktciy iz tonkostennykh gnutykh profilei, Montazhnye i spetcialnye raboty v stroitelstve, 3 (2008) pp.2-7.

Google Scholar

[31] V.V. Lalin, V.A. Rybakov, P.A. Morozov. The finite elements research for calculation of thin-walled bar, Magazine of civil engineering, 1(27) (2012) pp.53-73.

DOI: 10.5862/mce.27.7

Google Scholar

[32] D.N. Smaznov. Ustoychivost pri szhatii sostavnykh kolonn, vypolnennykh iz profiley iz vysokoprochnoy stali, Magazine of civil engineering, 3(5) (2009) pp.42-49.

Google Scholar

[33] G.J. Hancock. Cold-formed steel structures, Journal of Constructional Steel Research, 59(4) (2003) pp.473-487.

DOI: 10.1016/s0143-974x(02)00103-7

Google Scholar

[34] M. Heinisuo, and J. Kukkonen. Resistance of cold-formed steel members by new eurostandard, Structural Mechanics, 39(2) (2006) pp.3-21.

Google Scholar

[35] D. Ungermann, S. Lübke, B. Brune. Tests and design approach for plain channels in local and coupled local-flexural buckling based on eurocode 3, Thin-Walled Structures, 81 (2014) pp.108-120.

DOI: 10.1016/j.tws.2013.09.013

Google Scholar

[36] G. Winter. Light gauge (thin-walled) steel structures for building in the U.S.A. Preliminary publication, 4th Congress of the International Association for Bridge and Engineering, 1952, 524 p.

Google Scholar

[37] D.A. Trubina, L.A. Kononova, A.A. Kaurov, Y.D. Pichugin, D.A. Abdulaev. Local buckling of steel cold-formed profiles under transverse bending, Construction of Unique Buildings and Structures, 4(19) (2014) pp.109-127.

Google Scholar

[38] A.R. Tusnin, O.A. Tusnina. Computing system «Stalkon» for analysis and design of lattice structures from thin-walled rods of open profile, Industrial and Civil Engineering, 8 (2012) pp.62-64.

Google Scholar

[39] N.I. Vatin, A.S. Sinelnikov. Footway bridges: cold formed steel cross-section, Construction of Unique Buildings and Structures, 3 (2012) pp.39-51.

Google Scholar

[40] O.A. Tusnina, M. Heinisuo. Method for analysis of thin-walled cold-formed purlins in roof based on the EUROCODE recommendations, Industrial and Civil Engineering, 11 (2012) pp.67-70.

Google Scholar

[41] O.A. Tusnina. Joints of sandwich panels with thin-walled bent purlins with the use of blind rivets, Industrial and Civil Engineering, 3 (2013) pp.14-16.

Google Scholar

[42] D. Ungermann, B. Brune, S. Lübke. Numerical and analytical investigations on plain channels in coupled instabilities, Steel Construction, 5(4) (2012) 205-211.

DOI: 10.1002/stco.201210025

Google Scholar

[43] E.Z. Kriksunov, A.V. Perelmuter, V.V. Urchenko. Designing of flanged joints of frame structures, 2 (2010) pp.33-37.

Google Scholar