[1]
K. Oguro, Y. Kawami, and H. Takenaka, Bending of an Ionic-Conducting polymer Film-electrode Composite by an Electric Stimulus at Low Voltage, Journal of Micromachine Society, No. 5, 27-30, (1992).
Google Scholar
[2]
M. Shahinpoor and K. J. Kim, Ionic polymer-metal composites: I. fundamentals, Smart Materials and Structures, Vol. 10, 819–833, (2001).
DOI: 10.1088/0964-1726/10/4/327
Google Scholar
[3]
M. Shahinpoor and K. J. Kim, Ionic polymer–metal composites: IV. Industrial and medical applications, Smart Materials and Structures, Vol. 14, 197–214, (2005).
DOI: 10.1088/0964-1726/14/1/020
Google Scholar
[4]
Thanh Tung Nguyen, Vinh Khanh Nguyen, Youngtai Yoo , A Novel Polymeric Micropump based on a Multilayered Ionic Polymer-Metal Composite. IEEE No. 4, 4888-4892, (2006).
DOI: 10.1109/iecon.2006.347352
Google Scholar
[5]
A. Sebastian and S. Salapaka, H loop shaping design for nano-positioning, in Proc. Amer. Control Conf., Vol. 5, 3708–3713, (2003).
Google Scholar
[6]
H. Jung and D. -G. Gweon, Creep characteristics of piezoelectric actuators, Rev. Sci. Instrum., Vol. 71, No. 4, 1896–1900, (2000).
Google Scholar
[7]
X. Tan, R. Venkataraman, and P. S. Krishnaprasad, Control of hysteresis: Theory and experimental results: in Modeling. Signal Processing. and Control in Smort Structures, Vol. 4326 of SPIES, 101-112, (2001).
DOI: 10.1117/12.436463
Google Scholar
[8]
I. D. Mayergoyz, Mathematical Models of Hysteresis. New York: Springer-Verlag, (1991).
Google Scholar
[9]
K. -H. Hoffmann, J. Sprekels, and A. Visintin, Identification of hysteretic loops, J. Comput. Phys, vol. 78, 215–230, (1988).
Google Scholar