[1]
C. Yozgatligil, et al., Comparison of missing value imputation methods in time series: the case of Turkish meteorological data, Theoretical and Applied Climatology, pp.1-25, (2012).
DOI: 10.1007/s00704-012-0723-x
Google Scholar
[2]
R. L. Presti, et al., A methodology for treating missing data applied to daily rainfall data in the Candelaro River Basin (Italy), Environmental monitoring and assessment, vol. 160, pp.1-22, (2010).
DOI: 10.1007/s10661-008-0653-3
Google Scholar
[3]
R. Romero, et al., A 30-year (1964-1993) daily rainfall data base for the Spanish Mediterranean regions: First exploratory study, International Journal of Climatology, vol. 18, pp.541-560, (1998).
DOI: 10.1002/(sici)1097-0088(199804)18:5<541::aid-joc270>3.0.co;2-n
Google Scholar
[4]
I. Auer, et al., A new instrumental precipitation dataset for the greater alpine region for the period 1800–2002, International Journal of Climatology, vol. 25, pp.139-166, (2005).
Google Scholar
[5]
E. Linacre, Climate data and resources: a reference and guide: Psychology Press, (1992).
Google Scholar
[6]
P. Coulibaly and N. Evora, Comparison of neural network methods for infilling missing daily weather records, Journal of Hydrology, vol. 341, pp.27-41, (2007).
DOI: 10.1016/j.jhydrol.2007.04.020
Google Scholar
[7]
J. Kajornrit, et al., Estimation of missing precipitation records using modular artificial neural networks, in Neural Information Processing, 2012, pp.52-59.
DOI: 10.1007/978-3-642-34478-7_7
Google Scholar
[8]
J. L. Schafer and J. W. Graham, Missing data: Our view of the state of the art, Psychological methods, vol. 7, pp.147-177, (2002).
DOI: 10.1037/1082-989x.7.2.147
Google Scholar
[9]
T. Schneider, Analysis of incomplete climate data: Estimation of mean values and covariance matrices and imputation of missing values, Journal of Climate, vol. 14, pp.853-871, (2001).
DOI: 10.1175/1520-0442(2001)014<0853:aoicde>2.0.co;2
Google Scholar
[10]
M. Malek, et al., Reconstruction of missing daily data rainfall using unsupervised artificial neural network, International Journal of Electrical and Computer Engineering, vol. 4, pp.340-345, (2008).
Google Scholar
[11]
J. K. Eischeid, et al., Creating a serially complete, national daily time series of temperature and precipitation for the western United States, Journal of Applied Meteorology, vol. 39, pp.1580-1591, (2000).
DOI: 10.1175/1520-0450(2000)039<1580:cascnd>2.0.co;2
Google Scholar
[12]
P. Bostan, et al., Comparison of regression and kriging techniques for mapping the average annual precipitation of Turkey, International Journal of Applied Earth Observation and Geoinformation, vol. 19, pp.115-126, (2012).
DOI: 10.1016/j.jag.2012.04.010
Google Scholar
[13]
P. Ramos Calzado, et al., A novel approach to precipitation series completion in climatological datasets: application to Andalusia, International Journal of Climatology, vol. 28, pp.1525-1534, (2008).
DOI: 10.1002/joc.1657
Google Scholar
[14]
P. Stıpanek, AnClim–software for time series analysis (for Windows), Dept. of Geography, Fac. of Natural Sciences, MU, Brno, vol. 1, (2004).
Google Scholar
[15]
J. C. Aravena and B. H. Luckman, Spatio‐temporal rainfall patterns in Southern South America, International Journal of Climatology, vol. 29, pp.2106-2120, (2009).
DOI: 10.1002/joc.1761
Google Scholar
[16]
P. D. Sampson, et al., Pragmatic estimation of a spatio-temporal air quality model with irregular monitoring data, Atmospheric Environment, vol. 45, pp.6593-6606, (2011).
DOI: 10.1016/j.atmosenv.2011.04.073
Google Scholar
[17]
E. Isaaks and R. Srivastava, An introduction to applied geostatistics. New York: Oxford University Press, (1989).
Google Scholar
[18]
P. Goovaerts, Geostatistics for natural resources evaluation. New York: Oxford University Press, (1997).
Google Scholar
[19]
R. Webster and M. Oliver, Geostatistics for environmental scientists. New York: John Wiley & Sons Inc, (2007).
Google Scholar
[20]
R. Kerry and M. Oliver, Determining the effect of asymmetric data on the variogram. I. Underlying asymmetry, Computers & geosciences, vol. 33, pp.1212-1232, (2007).
DOI: 10.1016/j.cageo.2007.05.008
Google Scholar
[21]
R. Kerry and M. Oliver, Determining the effect of asymmetric data on the variogram. II. Outliers, Computers & geosciences, vol. 33, pp.1233-1260, (2007).
DOI: 10.1016/j.cageo.2007.05.009
Google Scholar