[1]
Vidal M, Amigo J M. Pre-processing of Hyper spectral Images[J]. Chemometrics and Intelligent Laboratory Systems, 2012, 34(2): 274-286.
Google Scholar
[2]
Benediktsson JA, Swain P H. Consensus Theoretic Classification Methods. IEEE Transactions on System Man and Cybernetics, 1992, 22(4): 688-704.
DOI: 10.1109/21.156582
Google Scholar
[3]
Chen J Y, Reed I S. A Detection Algorithm for Opital Targets in Clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1987, 23(1): 46-59.
DOI: 10.1109/taes.1987.313335
Google Scholar
[4]
Reed I S, Yu X L. Adaptive Multiple-Band CFAR Detection of An Optical Pattern with Unknown Spectral Distribution. IEEE Transactions on Acoustics, Speech and Signal Processing[J], 1990, 38(10): 1760-1770.
DOI: 10.1109/29.60107
Google Scholar
[5]
Chang C I. Hyper spectral Imaging: Techniques for Spectral Detection and Classification[M]. New York: Kluwer Academic, (2003).
Google Scholar
[6]
Richards J A., Jia X. Remote Sensing Digital Image Processing[M]. New York: Springer-Verlag, (1993).
Google Scholar
[7]
Harsanyi, Charles J. Detection and Classification of Subpixel Spectral Signatures in Hyper spectral Image Sequences[D]. USA: University of Maryland Baltimore County, 1993: 56-100.
Google Scholar
[8]
Hsueh M, Chang C I. Adaptive Causal Anomaly Detection for Hyper spectral Imagery[C]. IEEE International on Geoscience and Remote Sensing Symposium, 2004, 5: 3222-3224.
DOI: 10.1109/igarss.2004.1370387
Google Scholar
[9]
Hsuan R. Weighted Anomaly Detection for Hyper spectral Remotely Sensed Images[J]. SPIE, 2005, 5995(1): 20-27.
Google Scholar
[10]
Manolakis D, Siracusa C, Mardcn D. Hyper spectral Adaptive Matched Filter Detectors: Practical Performance Comparison[J]. SPIE, 2001, 4831: 18-33, 40-42.
Google Scholar