[1]
A. -L. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286 (1999), 509-512.
Google Scholar
[2]
Albert-László Barabási, Erzsébet Ravasz , Tamá Vicsek. Deterministic scale-free networks. Physica A 299 (2001) 559-564.
DOI: 10.1016/s0378-4371(01)00369-7
Google Scholar
[3]
J.A. Bondy and U.S.R. Murty. Graph Theory. Springer, (2008).
Google Scholar
[4]
S. -C. Chang and L. -C. Chen. Dimer-monomer model on the Sierpinski gasket. Physica A: Stat. Mech. Appl., 387(7): 1551-1566, (2008).
DOI: 10.1016/j.physa.2007.10.057
Google Scholar
[5]
L. da F. Costa F. A. Rodrigues G. Travieso P. R. Villas Boas. Characterization of Complex Networks: A Survey of measurements. arXiv: cond-mat/0505185v5 [cond-mat. dis-nn] 16 (2006).
Google Scholar
[6]
Henning Fernau, Joachim Kneis, Dieter Kratsch, Alexander Langer, Mathieu Liedloff, Daniel Raible, Peter Rossmanith, An exact algorithm for the Maximum Leaf Spanning Tree problem, Theoretical Computer Science 412 (2011) 6290-6302.
DOI: 10.1016/j.tcs.2011.07.011
Google Scholar
[7]
M. Garey, D. Johnson, Computers and Intractability: A Guide to the Theory of NP-completeness, Freeman, (1979).
Google Scholar
[8]
D. -H. Kim, J. D. Noh, and H. Jeong. Scale-free trees: The skeletons of complex networks. Physical Review E 70, 046126 (2004), 1-5.
Google Scholar
[9]
S. Itzkovitz and U. Alon. Subgroups and Network Motifs in Geometric Networks. Phys. Rev. E 71 (2005), 026117.
Google Scholar
[10]
Ted G. Lewis. Network Science: Theory and Application. John Wiley and Sons, Inc., Hoboken, New Jersey (2009).
Google Scholar
[11]
M. E. J. Newman, Resuece Letter CS-1: Complex System, Am. J. Phys. 79 (8) (2011).
Google Scholar
[12]
M. E.J. Newman, The structure and function of complex networks, SIAM Review 45, 167 (2003).
Google Scholar
[13]
E. Ravasz, A. -L. Barabási, Hierarchical organization in complex networks, Phys. Rev. E 67, 026112 (2003).
Google Scholar
[14]
Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N. And Barabási, A. -L. Hierarchical organization of modularity in metabolic networks. Science 297, 1551-1555 (2002).
DOI: 10.1126/science.1073374
Google Scholar
[15]
S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network Motifs in the Transcriptional Regulation Network of Escherichia Coli. Nature Genetics 31: 1 (2002), 64-68.
DOI: 10.1038/ng881
Google Scholar
[16]
Tommy Thomadsen. Hierarchical Network Design. Kongens Lyngby 2005 IMM-PHD-2005-149.
Google Scholar
[17]
Bing Yao, Xia Liu, Wan-jia Zhang, Xiang-en Chen, Xiao-min Zhang, Ming Yao, Zheng-xue Zhao. Applying Graph Theory To The Internet of Things. 2013 IEEE International Conference on High Performance Computing and Communications and 2013 IEEE International Conference on Embedded and Ubiquitous Computing, 2354-2361.
DOI: 10.1109/hpcc.and.euc.2013.339
Google Scholar
[18]
Zhongzhi Zhang, Shuigeng Zhou, Lujun Fang, Jihong Guan and Yichao Zhang. Maximal planar scale-free Sierpinski networks with small-world effect and power-law strength-degree correlation. EPL (Europhysics Letters), 2007, 79: 38007.
DOI: 10.1209/0295-5075/79/38007
Google Scholar
[19]
Zhongzhi Zhang, Francesc Comellas, Guillaume Fertin, Lili Rong. High Dimensional Apollonian Networks. Journal of Physics A General Physics 04/(2005).
Google Scholar
[20]
Zhang Zhongzhi, Lin Yuan, Gao Shuyang, Zhou Shuigeng, and Guan Jihong. Average distance in a hierarchical scale-free network: an exact solution. Journal of Statistical Mechanics: Theory and Experiment, 2009, P10022.
DOI: 10.1088/1742-5468/2009/10/p10022
Google Scholar
[21]
Rui Jiang, Zhidong Tu, Ting Chen, and Fengzhu Sun. Network motif identification in stochastic networks. Proc Natl Acad Sci U S A. 2006 Jun 20; 103(25): 9404-9.
DOI: 10.1073/pnas.0507841103
Google Scholar