Fractal Growing Network Models Related with the Internet of Things

Article Preview

Abstract:

We focus on produce network models by constructive operations based on configurations in order to provide various network models for The Internet of Things (IoT) such that these models may be economic and strong in building real networks of IoT.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2471-2475

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. -L. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286 (1999), 509-512.

Google Scholar

[2] Albert-László Barabási, Erzsébet Ravasz , Tamá Vicsek. Deterministic scale-free networks. Physica A 299 (2001) 559-564.

DOI: 10.1016/s0378-4371(01)00369-7

Google Scholar

[3] J.A. Bondy and U.S.R. Murty. Graph Theory. Springer, (2008).

Google Scholar

[4] S. -C. Chang and L. -C. Chen. Dimer-monomer model on the Sierpinski gasket. Physica A: Stat. Mech. Appl., 387(7): 1551-1566, (2008).

DOI: 10.1016/j.physa.2007.10.057

Google Scholar

[5] L. da F. Costa F. A. Rodrigues G. Travieso P. R. Villas Boas. Characterization of Complex Networks: A Survey of measurements. arXiv: cond-mat/0505185v5 [cond-mat. dis-nn] 16 (2006).

Google Scholar

[6] Henning Fernau, Joachim Kneis, Dieter Kratsch, Alexander Langer, Mathieu Liedloff, Daniel Raible, Peter Rossmanith, An exact algorithm for the Maximum Leaf Spanning Tree problem, Theoretical Computer Science 412 (2011) 6290-6302.

DOI: 10.1016/j.tcs.2011.07.011

Google Scholar

[7] M. Garey, D. Johnson, Computers and Intractability: A Guide to the Theory of NP-completeness, Freeman, (1979).

Google Scholar

[8] D. -H. Kim, J. D. Noh, and H. Jeong. Scale-free trees: The skeletons of complex networks. Physical Review E 70, 046126 (2004), 1-5.

Google Scholar

[9] S. Itzkovitz and U. Alon. Subgroups and Network Motifs in Geometric Networks. Phys. Rev. E 71 (2005), 026117.

Google Scholar

[10] Ted G. Lewis. Network Science: Theory and Application. John Wiley and Sons, Inc., Hoboken, New Jersey (2009).

Google Scholar

[11] M. E. J. Newman, Resuece Letter CS-1: Complex System, Am. J. Phys. 79 (8) (2011).

Google Scholar

[12] M. E.J. Newman, The structure and function of complex networks, SIAM Review 45, 167 (2003).

Google Scholar

[13] E. Ravasz, A. -L. Barabási, Hierarchical organization in complex networks, Phys. Rev. E 67, 026112 (2003).

Google Scholar

[14] Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N. And Barabási, A. -L. Hierarchical organization of modularity in metabolic networks. Science 297, 1551-1555 (2002).

DOI: 10.1126/science.1073374

Google Scholar

[15] S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network Motifs in the Transcriptional Regulation Network of Escherichia Coli. Nature Genetics 31: 1 (2002), 64-68.

DOI: 10.1038/ng881

Google Scholar

[16] Tommy Thomadsen. Hierarchical Network Design. Kongens Lyngby 2005 IMM-PHD-2005-149.

Google Scholar

[17] Bing Yao, Xia Liu, Wan-jia Zhang, Xiang-en Chen, Xiao-min Zhang, Ming Yao, Zheng-xue Zhao. Applying Graph Theory To The Internet of Things. 2013 IEEE International Conference on High Performance Computing and Communications and 2013 IEEE International Conference on Embedded and Ubiquitous Computing, 2354-2361.

DOI: 10.1109/hpcc.and.euc.2013.339

Google Scholar

[18] Zhongzhi Zhang, Shuigeng Zhou, Lujun Fang, Jihong Guan and Yichao Zhang. Maximal planar scale-free Sierpinski networks with small-world effect and power-law strength-degree correlation. EPL (Europhysics Letters), 2007, 79: 38007.

DOI: 10.1209/0295-5075/79/38007

Google Scholar

[19] Zhongzhi Zhang, Francesc Comellas, Guillaume Fertin, Lili Rong. High Dimensional Apollonian Networks. Journal of Physics A General Physics 04/(2005).

Google Scholar

[20] Zhang Zhongzhi, Lin Yuan, Gao Shuyang, Zhou Shuigeng, and Guan Jihong. Average distance in a hierarchical scale-free network: an exact solution. Journal of Statistical Mechanics: Theory and Experiment, 2009, P10022.

DOI: 10.1088/1742-5468/2009/10/p10022

Google Scholar

[21] Rui Jiang, Zhidong Tu, Ting Chen, and Fengzhu Sun. Network motif identification in stochastic networks. Proc Natl Acad Sci U S A. 2006 Jun 20; 103(25): 9404-9.

DOI: 10.1073/pnas.0507841103

Google Scholar