[1]
Romeo, J., Pajares, G., Montalvo, M., Guerrero, J.M., Guijarro, M., de la Cruz, J.M., 2013. A new expert system for greenness identification in agricultural images. Exp. Syst. Appl. 40, 2275–2286.
DOI: 10.1016/j.eswa.2012.10.033
Google Scholar
[2]
de Castro, A.I., López-Granados, F., Jurado-Expósito, M., 2013. Broad-scale cruciferous weed patch classification in winter wheat using Quick Bird imagery for in-season site-site specific control, 2013. Precis. Agric. 14, 392–413.
DOI: 10.1007/s11119-013-9304-y
Google Scholar
[3]
Peña-Barragán, J.M., Ngugi, M.K., Plant, R.E., Six, J., 2011. Object-based crop identification using multiple vegetation indices, textural features and crop phenology. Remote Sens. Environ. 115, 1301–1316.
DOI: 10.1016/j.rse.2011.01.009
Google Scholar
[4]
López-Granados, F., 2011. Weed detection for site-specific weed management: mapping and real-time approaches. Weed Res. 51, 1–11.
DOI: 10.1111/j.1365-3180.2010.00829.x
Google Scholar
[5]
Xiao, J., Moody, A., 2005. A comparison of methods for estimating fractional green vegetation cover within a desert-to-upland transition zone in central New Mexico, USA. Remote Sens. Environ. 98, 237–250.
DOI: 10.1016/j.rse.2005.07.011
Google Scholar
[6]
Gitelson, A.A., Kaufman, Y.J., Stark, R., Rundquist, D., 2002. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 80, 76–87.
DOI: 10.1016/s0034-4257(01)00289-9
Google Scholar
[7]
Woebbecke, D.M., Meyer, G.E., Von Bargen, K., Mortensen, D.A., 1995. Color indices for weed identification under various soil, residue, and lighting conditions. Trans. ASAE 38, 259–269.
DOI: 10.13031/2013.27838
Google Scholar
[8]
Kataoka, T., Kaneko, T., Okamoto, H., Hata, S., 2003. Crop growth estimation system using machine vision. In: 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2003. pp. b1079–b1083.
DOI: 10.1109/aim.2003.1225492
Google Scholar
[9]
Hague, T., Tillett, N.D., Wheeler, H., 2006. Automated crop and weed monitoring in widely spaced cereals. Precis. Agric. 7, 21–32.
DOI: 10.1007/s11119-005-6787-1
Google Scholar
[10]
Camargo Neto, J., 2004. A combined statistical-soft computing approach for classification and mapping weed species in minimum-tillage systems. ETD Collect. Univ. Neb. – Linc. p.1–170.
Google Scholar
[11]
Burgos-Artizzu, X.P., Ribeiro, A., Guijarro, M., Pajares, G., 2011. Real-time image processing for crop/weed discrimination in maize fields. Comput. Electron. Agric. 75, 337–346.
DOI: 10.1016/j.compag.2010.12.011
Google Scholar
[12]
TSR Solutions. http: / marinebiochemists. net.
Google Scholar