Physical and Electrochemical Properties of Li2-xFeSiO4/C Cathode Material for Li-Ion Batteries

Article Preview

Abstract:

Li2-xFeSiO4/C (x=0.01, 0.05, 0.1) were successfully synthesized by a traditional solid-state method and systematically investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and the charge-discharge test, respectively. The results demonstrated that Li2-xFeSiO4 exhibited the best electrochemical performance among the three as-synthsied samples. it delivered a specific discharge capacity of 142 mAh g-1, 112 mAh g-1 at 0.2 C and 2 C, respectively. After 100 cycles at the rate of 1 C, the discharge capacity remained 95.1% of its initial value.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

4710-4713

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. P. Lv, J. Y. Bai, P. Zhang, S. Q. Wu, Y. X. Li, W. Wen, Z. Jiang, J. X. Mi, Z. Z. Zhu, Y. Yang, Chem. Mater. 25 (2013) 2014-(2020).

Google Scholar

[2] S. Zhang, C. Deng, S. Y. Yang, Electrochem. Solid-State Lett. 12 (2009) A136- A139.

Google Scholar

[3] C. Deng, S. Zhang, B. L. Fu, S. Y. Yang, L. Ma, Mater. Chem. Phys. 120 (2010) 14-17.

Google Scholar

[4] S. Zhang, C. Deng, B. L. Fu, S. Y. Yang, L. Ma, J. Electroanal. Chem. 644 (2010), 150-154.

Google Scholar

[5] Z. L. Gong, Y. X. Li, G. N. He, J. Li, Y. Yang, Electrochem. Solid-State Lett. 11 (2008) A60- A63.

Google Scholar

[6] A. Kokalj, R. Dominko, G. Mali, A. Meden, M. Gaberscek , J. Jamnik, Chem. Mater. 19 (2007) 3633-3640.

DOI: 10.1021/cm063011l

Google Scholar

[7] D. Ensling, M. Stjerndahl, A. Nyten, T. Gustafsson, J. O. Thomas, J. Mater. Chem. 19 (2009) 82-88.

Google Scholar

[8] K.C. Kam, T. Gustafsson, J. O. Thomas, Solid State Ionics 192(2011) 356-359.

Google Scholar

[9] J. L. Yang, X. C. Kang, L. Hu, X. Gong, D. P. He, T. Peng, S. C. Mu, J. Alloys Compd. 572 (2013) 158-162.

Google Scholar

[10] B. Shao, I. Taniguchi, J. Power Sources 199(2012)278-286.

Google Scholar

[11] Z. P. Yang, S. Cai, X. Zhou, Y. M. Zhao, L. J. Miao, J. Electrochem. Soc. 159 (2012) A894- A898.

Google Scholar

[12] Z. P. Yan, S. Cai, L. J. Miao, X. Zhou, Y. M. Zhao, J. Alloys Compd. 511(2012) 101-106.

Google Scholar

[13] H. J. Guo, K. X. Xiang, X. Cao, X. H. Li, Z. X. Wang, L. M. Li, Trans. Nonferrous Met. Soc. China 19(2009)166-169.

Google Scholar

[14] L. M. Li, H. J. Guo, X. H. Li, Z. X. Wang, W. J. Peng, K. X. Xiang, X. Cao, J. Power Sources 189(2009)45–50.

Google Scholar

[15] X. B. Huang, X. Li, H. Y. Wang, Z. L. Pan, M. Z. Qu, Z. L. Yu, Solid State Ionics 181(2010)1451-1455.

Google Scholar

[16] B. Huang, X. D. Zheng, M. Lu, J. Alloys Compd. 525(2012)110-113.

Google Scholar

[17] X. B. Huang, X. Li, H. Y. Wang, Z. L. Pan, M. Z. Qu, Z. L. Yu, Electrochim. Acta 55(2010) 7362-7366.

Google Scholar

[18] S. Zhang, C. Deng, B. L. Fu, S. Y. Yang, L. Ma, Electrochim. Acta 55(2010) 8482-8489.

Google Scholar

[19] C. Deng, S. Zhang, S. Y. Yang, B. L. Fu, L. Ma, J. Power Sources 196(2011)386–392.

Google Scholar

[20] H. Hao, J. B. Wang, J. L. Liu, T. Huang, A. S. Yu, J. Power Source 210(2012)397-401.

Google Scholar

[21] R. Malik, D. Burch, M. Bazant, G. Ceder, Nano Lett. 10 (2010) 4123–4127.

DOI: 10.1021/nl1023595

Google Scholar

[22] M. S. Islam, D. J. Driscoll, C. A. J. Fisher, P. R. Slater,Chem. Mater. 17 (2005) 5085-5092.

Google Scholar

[23] R. N. Sckock, Point Defects in Minerals, American Geophysical Union, Wshington D.C. (1985).

Google Scholar

[24] A. Nyten, A. Abouimrane, M. Armand, T. Gustafsson, J. O. Thomas, Electrochem. Commun. 7 (2005) 156-160.

Google Scholar

[25] Y. D. Cho, G. T. K. Fey, H. M. Kao, J. Power Sources. 189 (2009) 256-262.

Google Scholar

[26] X. Li, M. Z. Qu , Y. J. Huai, Z. L. Yu, Electrochim. Acta. 55 (2010) 2978-2982.

Google Scholar