Influence of the Bonding Temperature on the Microstructure at the Cu/Al Interfacial Region

Article Preview

Abstract:

The Cu/Al composites are of vital importance in industrial applications due to their numerous advantages. The influence of the bonding temperature on the microstructure and morphology of the Cu/Al couples, fabricated using diffusion bonding method, is investigated in this paper. The interfacial morphology and constituent phases at the Cu/Al interface are analyzed by means of scanning electron microscopy equipped with energy dispersive X-ray spectroscopy. The results indicate that microstructural characteristics are associated with various bonding temperatures due to the accelerated inter-diffusion of atoms at higher temperature. The intermetallic layer is thicker with increasing the bonding temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

4909-4913

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Heness, G., Wuhrer, R., Yeung, W.Y. Interfacial strength development of roll-bonded aluminium/copper metal laminates. [J]. Materials Science and Engineering. A. (2008).

DOI: 10.1016/j.msea.2006.09.184

Google Scholar

[2] Xiaobing Li, Guoyin Zu, Mingming Ding, Yongliang Mu, Ping Wang. Interfacial microstructure and mechanical properties of Cu/Al clad sheet fabricated by asymmetrical roll bonding and annealing [J]. Materials Science and Engineering: A. (2011).

DOI: 10.1016/j.msea.2011.09.087

Google Scholar

[3] Funamizu, Y, Watanabe, K. Interdiffusion in Al-Cu System [J]. Transactions of the Japan Institute of Metals. 1971(No. 3).

Google Scholar

[4] Yajie Guo, Guiwu Liu, Haiyun Jin, Zhongqi Shi, Guanjun Qiao. Intermetallic phase formation in diffusion-bonded Cu/Al laminates [J]. Journal of Materials Science.

DOI: 10.1007/s10853-010-5093-0

Google Scholar

[5] E. Hug and N. Bellido. Brittleness study of intermetallic (Cu, Al) layers in copper-clad aluminium thin wires [J]. Materials Science and Engineering: A. 2011(No. 22-23).

DOI: 10.1016/j.msea.2011.05.077

Google Scholar

[6] P. Xue, B.L. Xiao, D.R. Ni, Z.Y. Ma. Enhanced mechanical properties of friction stir welded dissimilar Al–Cu joint by intermetallic compounds [J]. Materials Science and Engineering. 2010(No. 21-22).

DOI: 10.1016/j.msea.2010.05.061

Google Scholar

[7] Tan, C.W., Jiang, Z.G., Li, L.Q., Chen, Y.B., Chen, X.Y. Microstructural evolution and mechanical properties of dissimilar Al–Cu joints produced by friction stir welding. [J]. Materials & Design. (2013).

DOI: 10.1016/j.matdes.2013.04.056

Google Scholar

[8] Kwang Seok LEE, Yong-Nam KWON. Solid-state bonding between Al and Cu by vacuum hot pressing [J]. Transactions of Nonferrous Metals Society of China. 2013(No. 2).

DOI: 10.1016/s1003-6326(13)62467-x

Google Scholar

[9] P. Eslami and A. Karimi Taheri. An investigation on diffusion bonding of aluminum to copper using equal channel angular extrusion process [J]. Materials Letters. 2011(No. 12).

DOI: 10.1016/j.matlet.2011.03.053

Google Scholar

[10] Zare, G R, Divandari, M, Arabi, H. Investigation on interface of Al/Cu couples in compound casting [J]. Materials Science and Technology. 2013(No. 2).

DOI: 10.1179/1743284712y.0000000096

Google Scholar

[11] Ya-Jun Su, Xin-Hua Liu, Hai-You Huang, Xue-Feng Liu and Jian-Xin Xie. Interfacial Microstructure and Bonding Strength of Copper Cladding Aluminum Rods Fabricated by Horizontal Core-Filling Continuous Casting [J]. Metallurgical and Materials Transactions A. 2011(No. 13).

DOI: 10.1007/s11661-011-0785-x

Google Scholar

[12] Lee, T.H., Lee, Y.J., Park, K.T., Nersisyan, H.H., Jeong, H.G., Lee, J.H. Controlling Al/Cu composite diffusion layer during hydrostatic extrusion by using colloidal Ag. [J]. Journal of Materials Processing Technology. 2013(No. 3).

DOI: 10.1016/j.jmatprotec.2012.10.001

Google Scholar

[13] Elrefaey,A., Tillmann,W. Solid state diffusion bonding of titanium to steel using a copper base alloy as interlayer. [J]. Journal of Materials Processing Technology. 2009(No. 5).

DOI: 10.1016/j.jmatprotec.2008.06.014

Google Scholar

[14] Divandari,M., Vahid Golpayegani A.R. Study of Al/Cu rich phases formed in A356 alloy by inserting Cu wire in pattern in LFC process. [J]. Materials and Design. 2009(No. 8).

DOI: 10.1016/j.matdes.2009.01.008

Google Scholar

[15] Nami,H., Halvaee,A., Adgi,H., Hadian,A. Investigation on microstructure and mechanical properties of diffusion bonded Al/Mg2Si metal matrix composite using copper interlayer. [J]. Journal of Materials Processing Technology. 2010(No. 10).

DOI: 10.1016/j.jmatprotec.2010.03.015

Google Scholar

[16] Guo, Yajie, Qiao, Guanjun, Jian, Wenzheng, Zhi, Xiaohui. Microstructure and tensile behavior of Cu–Al multi-layered composites prepared by plasma activated sintering. [J]. Materials Science and Engineering. A. 2010(No. 20).

DOI: 10.1016/j.msea.2010.04.080

Google Scholar

[17] P. He, J.C. Feng, B.G. Zhang. Microstructure and strength of diffusion-bonded joints of TiAl base alloy to steel [J]. Materials Characterization. 2002(NO. 5).

DOI: 10.1016/s1044-5803(02)00319-4

Google Scholar

[18] Chih-Chun Hsieh, Ming-Shou Shi and Weite Wu. Growth of intermetallic phases in Al/Cu composites at various annealing temperatures during the ARB process [J]. Metals and Materials International. 2012(No. 1).

DOI: 10.1007/s12540-012-0001-6

Google Scholar

[19] H. Kawakami, J. Suzuki, J. Nakajima. Bonding process of Al/Cu dissimilar bonding with liquefaction in air [J]. Welding international. 2007(No. 12).

DOI: 10.1080/09507110701843902

Google Scholar