Determination of Rhodium in Rhodium Octanoate Organic Waste Liquid Using Teflon Pressure Vessel-Assisted Sample Digestion and ICP-OES

Article Preview

Abstract:

A novel method for the determination of rhodium in rhodium octanoate organic waste liquid samples was established by inductively coupled plasma atomic emission spectrometry after samples digested by Teflon pressure digestion vessel with aqua regia. Such experiment conditions were investigated as the influence of sample dissolution methods, digestion time, digestion temperature and interfering ions on the determination. Under the optimized conditions, the linear range of calibration graph for Rh was 0 ~ 150.00 mg L-1, and the recovery was 96.20% ~ 102.36%. The relative standard deviation (RSDs) for Rh was 1.75 %. The proposed method was applied to determine the same samples with atomic absorption spectrometry with the results consistently, which is suitable for the determination of rhodium in rhodium octanoate organic waste liquid samples.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

5266-5269

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.M.L. Davies, R. Calvo and G. Ahmed: Tetrahedron. Letters Vol. 38 (1997), p.1737.

Google Scholar

[2] H.M.L. Davies and N.J.S. Hubyl: J. Am. Chem. Soc Vol. 115 (1993), p.9468.

Google Scholar

[3] A. Padwa and U. Chiacchio: J. Org. Chem Vol. 55 (1990), p.414.

Google Scholar

[4] R. Schierl: J. Microchem Vol. 67 (2000), p.245.

Google Scholar

[5] X. Dai, C. Koeberl and H. Froschl: Anal. Chim. Acta Vol. 436 (2001), p.79.

Google Scholar

[6] J. Tilch, M. Schuster, M. Schwarzer and Fresenius' J: Anal. Chem Vol. 367 (2000), p.450.

Google Scholar

[7] P. Kovacheva and R. Djingova: Anal. Chim. Acta Vol. 464 (2002), p.7.

Google Scholar

[8] I. Jarvis, M.M. Totland and K.E. Jarvis: Analyst Vol. 122 (1997), p.19.

Google Scholar

[9] K. Kanitsar, G. Koellensperger, S. Hann, A. Limbeck, H. Puxbaum and G. Stingeder: J. Anal. Atom. Spectrom Vol. 18 (2003), p.239.

DOI: 10.1039/b212218a

Google Scholar

[10] S. Zimmermann, C.M. Menzel, Z. Berner, J. -D. Eckhardt, D. Stüben, F. Alt, J. Messerschmidt, H. Taraschewski and B. Sures: Anal. Chim. Acta Vol. 439 (2001), p.203.

DOI: 10.1016/s0003-2670(01)01041-8

Google Scholar

[11] J.D. Whiteley and F. Murray: Sci. Total Environ Vol. 317 (2003), p.121.

Google Scholar

[12] B. Sures, S. Zimmermann, J. Messerschmidt, A. Von Bohlen and F. Alt: Environ. Pollut Vol. 113 (2001), p.341.

Google Scholar

[13] B. Sures, S. Zimmermann, C. Sonntag, D. Stuben and H. Taraschewski: Environ. Pollut Vol. 122 (2003), p.401.

Google Scholar

[14] T. Meisel, N. Fellner and J. Moser: J. Anal. Atom. Spectrom Vol. 18 (2003), p.720.

Google Scholar

[15] D. Cinti, M. Angelone, U. Masi and C. Cremisini: Sci. Total Environ Vol. 293 (2002), p.47.

Google Scholar

[16] R. Djingova, H. Heidenreich, P. Kovacheva and B. Markert: Anal. Chim. Acta Vol. 489 (2003), p.245.

Google Scholar

[17] K. Boch, M. Schuster, G. Risse and M. Schwarzer: Anal. Chim. Acta Vol. 459 (2002), p.257.

Google Scholar

[18] O.V. Borisov, D.M. Coleman, K.A. Oudsema and R.O. Carter III: J. Anal. Atom. Spectrom Vol. 12 (1997), p.239.

Google Scholar