Altitudinal Gradient May Shadow the Effects of Altitudinal Range on Species Diversity

Article Preview

Abstract:

Altitudinal range is widely used as a proxy of habitat heterogeneity to explain broad-scale geographical patterns of species diversity. Though altitudinal range is a factors derived from altitudinal gradient, altitudinal range’s effects on species diversity on altitudinal gradient remain little known. Based on large scale information of plant species, climatic and geographical factors, we investigated the altitudinal patterns of plant species diversity in the East Himalaya regions, and the effects of altitudinal range on species diversity on altitudinal gradient. We constructed two coefficients, ARDMA (altitudinal range divided by median altitude) and SDDAR (species diversity divided by altitudinal range). We used Spearman’s rank correlation to examine the associations among all of factors. Our results showed that species diversity decreased as the increase of altitude, and significantly related to potential evaporation. No significant correlation was observed between altitudinal range and species diversity, whereas ARDMA significantly related to species diversity, suggesting that only when altitudinal gradient was controlled, were there significant correlations between altitudinal range and species diversity. SDDAR significantly and negatively related to median altitude. We concluded that energy availability significantly affected the altitudinal patterns of species diversity, and altitudinal gradient may shadow the effects of altitudinal range on species diversity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

5464-5470

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z.H. Wang, C. Rahbek, J.Y. Fang, Effects of geographical extent on the determinants of woody plant diversity, Ecography 35 (2012) 1160-1167.

DOI: 10.1111/j.1600-0587.2012.07786.x

Google Scholar

[2] T.S. Romdal, M.B. Araujo, C. Rahbek, Life on a tropical planet: niche conservatism and the global diversity gradient, Global. Ecol. Biogeogr. 22 (2013) 344-350.

DOI: 10.1111/j.1466-8238.2012.00786.x

Google Scholar

[3] H. Qian, R.E. Ricklefs, Latitude, tree species diversity and the metabolic theory of ecology, Global. Ecol. Biogeogr. 20 (2011) 362-365.

DOI: 10.1111/j.1466-8238.2010.00590.x

Google Scholar

[4] H. Qian, W.D. Kissling, Spatial scale and cross-taxon congruence of terrestrial vertebrate and vascular plant species richness in China, Ecology. 91 (2010) 1172-1183.

DOI: 10.1890/09-0620.1

Google Scholar

[5] S.Q. Zhao, J.Y. Fang, Patterns of species richness for vascular plants in China's nature reserves, Divers. Distrib. 12(2006) 364-372.

DOI: 10.1111/j.1366-9516.2006.00232.x

Google Scholar

[6] Q. Liu, X.J. Ge, W.L. Chen, Grass (Poaceae) richness patterns across China's nature reserves, Plant. Ecol. 201(2009) 531-551.

DOI: 10.1007/s11258-008-9483-1

Google Scholar

[7] J.C. Svenning, M.C. Fitzpatrick, S Normand, Geography, topography, and history affect realized-to-potential tree species richness patterns in Europe, Ecography 33(2010) 1070-1080.

DOI: 10.1111/j.1600-0587.2010.06301.x

Google Scholar

[8] O. Allouchea, M Kalyuzhnya, G. Moreno-Ruedab, Area–heterogeneity tradeoff and the diversity of ecological communities, PNAS 109 (2012) 17495-17500.

Google Scholar

[9] C. Badgley, Tectonics, topography, and mammalian diversity. Ecography 33 (2010) 220-231.

Google Scholar

[10] Z.H. Luo, S.H. Tang, C.W. Li, Environmental Effects on Vertebrate Species Richness: Testing the Energy, Environmental Stability and Habitat Heterogeneity Hypotheses, PLOS ONE 7(2012) e35514.

DOI: 10.1371/journal.pone.0035514

Google Scholar

[11] U. Obertegger, B. Thaler, G. Flaim, Rotifer species richness along an altitudinal gradient in the Alps, Global. Ecol. Biogeogr. 19 (2010) 895-904.

DOI: 10.1111/j.1466-8238.2010.00556.x

Google Scholar

[12] J.J. Wang, J. Soininen, Y. Zhang, Contrasting patterns in elevational diversity between microorganisms and macroorganisms, J. Biogeogr. 38 (2011) 595-603.

DOI: 10.1111/j.1365-2699.2010.02423.x

Google Scholar

[13] R. Tsujino, T. Yumoto, Vascular plant species richness along environmental gradients in a cool temperate to sub-alpine mountainous zone in central Japan, J. Plant. Res. 126 (2013) 203-214.

DOI: 10.1007/s10265-012-0520-8

Google Scholar

[14] C.M. McCain, J.A. Grytnes, Elevational gradients in species richness, In: Encyclopedia of Life Sciences (ELS), John Wiley & Sons, Ltd., Chichester, England, (2010).

DOI: 10.1002/9780470015902.a0022548

Google Scholar

[15] P. Trigas, M. Panitsa, S. Tsiftsis, Elevational Gradient of Vascular Plant Species Richness and Endemism in Crete –The Effect of Post-Isolation Mountain Uplift on a Continental Island System, PLOS ONE, 8 (2013) e59425.

DOI: 10.1371/journal.pone.0059425

Google Scholar

[16] J.P. Bhatt, K. Manish, M.K. Pandit, Elevational Gradients in Fish Diversity in the Himalaya: Water Discharge Is the Key Driver of Distribution Patterns, PLOS ONE 7(2012) e46237.

DOI: 10.1371/journal.pone.0046237

Google Scholar

[17] G Austrheim, Plant diversity patterns in semi-natural grasslands along an elevational gradient in southern Norway, Plant. Ecol. 161(2002) 193-205.

Google Scholar

[18] G.H. Kattan, P. Franco, Bird diversity along elevational gradients in the Andes of Colombia: area and mass effects, Global. Ecol. Biogeogr. 13 (2004) 451-458.

DOI: 10.1111/j.1466-822x.2004.00117.x

Google Scholar

[19] O. Grau, J.A. Grytnes, H.J.B. Birks, A comparison of altitudinal species richness patterns of bryophytes with other plant groups in Nepal, Central Himalaya, J. Biogeogr. 34 (2007) 1907-(1915).

DOI: 10.1111/j.1365-2699.2007.01745.x

Google Scholar

[20] B.K. Acharya, N.J. Sanders, L. Vijayan, Elevational Gradients in Bird Diversity in the Eastern Himalaya: An Evaluation of Distribution Patterns and Their Underlying Mechanisms, PLOS ONE 6 (2011) e29097.

DOI: 10.1371/journal.pone.0029097

Google Scholar

[21] M.K. Pandit, R.E. Grumbine, Potential Effects of Ongoing and Proposed Hydropower Development on Terrestrial Biological Diversity in the Indian Himalaya, Conserv. Biol. 26 (2012) 1061-1071.

DOI: 10.1111/j.1523-1739.2012.01918.x

Google Scholar

[22] Y.S. Rawat, S.C.R. Vishvakarma, S.S. Oinam, Diversity, distribution and vegetation assessment in the Jahlmanal watershed in cold desert of the Lahaul valley, north-western Himalaya, India. iForest: Biogeosci. Fore. 3(2010) 65-71.

DOI: 10.3832/ifor0532-003

Google Scholar

[23] A. Jugran, I.D. Bhatt, R.S. Rawal, Impact of Habitat Type and Altitudinal Range on Morphological and Genetic Diversity of Valeriana jatamansi in Western Himalaya, India, In Vitro Cellular Developmental Biology-Animal 48 (2012) 63-64.

DOI: 10.1016/j.flora.2012.12.003

Google Scholar

[24] P. Pokhriyal, D.S. Chauhan, N.P. Todaria, Effect of altitude and disturbance on structure and species diversity of forest vegetation in a watershed of central Himalaya, Trop. Ecol. 53 (2012) 307-315.

Google Scholar

[25] N. Myers, R.A. Mittermeier, C.G. Mittermeier, et al., Biodiversity hotspots for conservation priorities, Nature 403(2000) 853-858.

DOI: 10.1038/35002501

Google Scholar

[26] M.G. Liu, Geographical Atlas of China, Sinomap Press, Beijing, China, (2010).

Google Scholar

[27] Chen SQ, Chen B & Su MR (2011) An estimation of ecological risk after dam construction in LRGR, China: Changes on heavy metal pollution and plant distribution. Procedia. Environ. Sci. 5: 153-159.

DOI: 10.1016/j.proenv.2011.03.061

Google Scholar

[28] T. Pan, S.H. Wu, D.M. He, Effects of longitudinal range-gorge terrain on the eco-geographical pattern in Southwest China, J. Geogr. Sci. 22(2012) 825-842.

DOI: 10.1007/s11442-012-0966-6

Google Scholar

[29] R.J. Hijmans, S.E. Cameron, J.L. Parra, et al., Very high resolution interpolated climate surfaces for global land areas, Int. J. Clim. 25(2005), 1965-(1978).

DOI: 10.1002/joc.1276

Google Scholar

[30] L.R. Holdridge, Determination of world plant formation from simple climatic data, Science 105 (1947) 367-368.

DOI: 10.1126/science.105.2727.367

Google Scholar

[31] D.H. Zhao, Atlas of Yunnan, Sinomap of China, Beijing, China, (2000).

Google Scholar

[32] H. Zhu, M. Cao, H.B. Hu, Geological history, flora, and vegetation of Xishuangbanna, southern Yunnan, China, Biotropica 38 (2006), 310-317.

DOI: 10.1111/j.1744-7429.2006.00147.x

Google Scholar

[33] H. Zhu, On the classification of forest vegetation in Xishuangbanna, southern Yunnan, Acta. Bot. Yunnanica. 29 (2007) 377-387.

Google Scholar

[34] J.C. Xu, A. Wilkes, Biodiversity impact analysis in northwest Yunnan, southwest China, Biodivers. Conserv. 13 (2004) 959-983.

DOI: 10.1023/b:bioc.0000014464.80847.02

Google Scholar

[35] Y.N. Zhang, Z.M. Zhang, Y.P. Geng, X.K. Ou, S.J. Peng, W.L. Wang, X. Feng, J.W. Guo, Priority plant communities for conservation in Northwest Yunnan, Biodivers. Sci. 21 (2013) 296-305.

Google Scholar

[36] J.M. Jun, Atlas of Xizhang, Sinomap of China, Beijing, China, (2005).

Google Scholar

[37] K. Liao, Atlas of vegetation of China, Sinomap Press, Beijing, China, (2007).

Google Scholar

[38] Kunming Institute of Botany of the Chinese Academy of Sciences Flora of Yunnan Science Press, Beijing, China, 1977-(2006).

Google Scholar

[39] Scientific Investigation Team for the Tibetan Plateau of Chinese Academy of Science, Flora of Xizhang, Science Press, Beijing, China, 1983-(1987).

Google Scholar

[40] Editorial Board of the Flora Sichuanica Flora of Sichuan, Sichuan Publishing Group, Chengdu, China, 1981-(2012).

Google Scholar

[41] Scientific Investigation Team for the Tibetan Plateau of Chinese Academy of Science Checklist of Vascular Plants of Hengduan Mountains, Science Press, Beijing, China, (1993).

Google Scholar

[42] Y.M. Yang, F. Du, Scientific Reports on Tongbiguan Nature Reserve in Yunnan. Yunnan. Science & Technology Press, Kunming, China, (2006).

Google Scholar

[43] Q.G. Yu, D.R. Qian, Xiaoheishan Nature Reserve, Science & Technology Press, Kunming, China, (2006).

Google Scholar

[44] H. Zhu, L.C. Yan , Seen Plants in Ailao Mountains. Science & Technology Press, Kunming, China, (2009).

Google Scholar

[45] Z.Y. Tang, Z.H. Wang, C.Y. Zheng, Biodiversity in China's mountains, Front. Ecol. Environ. 4 (2006) 347-352.

Google Scholar

[46] C.W. Thornthwaite, F.K. Hare, Climatic classification in forest, Unasylva 9 (1955) 51-59.

Google Scholar

[47] D.J. Currie, Energy and large scale patterns of animal and plant species richness, Am. Nat. 137 (1991) 27–49.

Google Scholar

[48] H. Qian, Large–scale biogeographic patterns of vascular plant richness in North America: an analysis at the genera level, J. Biogeogr. 25 (1998) 829–836.

DOI: 10.1046/j.1365-2699.1998.00247.x

Google Scholar

[49] D. Singh, K. Takahashi, J.M. Adams, Elevational Patterns in Archaeal Diversity on Mt. Fuji, PLoS ONE 7 (2012) e44494.

DOI: 10.1371/journal.pone.0044494

Google Scholar

[50] D.H. Wright, Species-Energy Theory: An Extension of Species-Area Theory, Oikos 41(1983) 496-506.

DOI: 10.2307/3544109

Google Scholar