[1]
G. J. Xie, H. F. Hu, G. J. Qin: The health monitoring system of turbo pump for liquid rocket engine, Journal of National University of Defense Technology, vol. 27 (2005), pp.40-44.
Google Scholar
[2]
C. F. Xu, G. K. Li. Practical wavelet method, Wuhan: Huazhong University Press(2001), pp.92-103.
Google Scholar
[3]
X. Z. Feng: Automatic modulation recognition using support vector machines based on wavelet transform, Journal of Electronic Measurement and Instrument, vol. 23 (2009), pp.87-92.
Google Scholar
[4]
Fei Sike Technology R&D Center. Wavelet analysis theory and MATLAB7 application, Beijing: Electronics Industry Press (2005), pp.444-452.
Google Scholar
[5]
X. B. Yu, T. Dong: Fast decomposition and reconstruction algorithm on discrete wavelet transform, Journal of Southeast University, vol. 32 (2002), pp.1-5.
Google Scholar
[6]
Z. H. Zhao: Fault diagnosis of roller bearing based on relative wavelet energy, Journal of Electronic Measurement and Instrument, vol. 25 (2011), pp.44-47.
DOI: 10.3724/sp.j.1187.2011.00044
Google Scholar
[7]
L. R. Xia: Research on key technology and system for turbo pump health monitoring of liquid rocket engine, Changsha: National University of Defense Technology(2010), pp.56-58.
Google Scholar
[8]
Z. S. Zhang, L. J. L i, Z. J. He: Multi-fault classifier based on support vector machine and its applications, Mechanical Science and Technology, vol. 23(2004), pp.536-538.
Google Scholar
[9]
Q. H. Xu, J. Shi: Some studies in aero-engine fault diagnosis using support vector machine, Acta Aeronoutica et Astronautica Sinica, vol. 26(2005), pp.686-690.
Google Scholar
[10]
X. M. Liu, J. Qiu, G. J. Liu: HMM-SVM based mixed diagnostic model and its application, Acta Aeronoutica et Astronautica Sinica, vol. 26 (2005), pp.496-500.
Google Scholar
[11]
Z. Y. Yang, T. Peng, J. B. Li, et al: Bayesian inference LSSVM based fault diagnosis method for rolling bearing, Journal of Electronic Measurement and Instrument, vol. 24 (2010), pp.420-424.
DOI: 10.3724/sp.j.1187.2010.00420
Google Scholar
[12]
W. L. Jiang, S. Q. Wu: Multi-data fusion fault diagnosis method based on SVM and evidence theory, Chinese Journal of Scientific Instrument, vol. 31 (2010), pp.1738-1743.
Google Scholar
[13]
G. J. Liu, Y. D. Su, C. H. Pan: Fault diagnosis method based on integrated fuzzy support vector machine and its application, Chinese Journal of Scientific Instrument, vol. 30 (2009), pp.1363-1367.
Google Scholar
[14]
J. Y. Tang, Y. B. Shi, D. Jiang: Analog circuit fault diagnosis using proximal support vector machine ensemble, Journal of Electronic Measurement and Instrument, vol. 24 (2010), pp.107-112.
DOI: 10.3724/sp.j.1187.2010.00107
Google Scholar
[15]
J. G. Yang: Wavelet analysis and its engineering applications, Beijing: China Machine Press(2005), pp.26-62.
Google Scholar
[16]
X. M. Liu, J. Qiu, G. J. Liu: HMM-SVM based mixed diagnostic model and its application, Acta Aeronoutica et Astronautica Sinica, vol. 26 (2005), pp.496-500.
Google Scholar