Predicting Impacts of Climate Change on Chinese Hybrid Poplar Using Maxent Modeling

Article Preview

Abstract:

Maximum entropy (Maxent) modeling was used to predict the potential climate habitat distribution of Chinese hybrid poplar (clone I-63, I-69 and I-72). Occurrence data were collected from literatures. The Maxent model performed better than random with an average cross-validated AUC value of 0.96. Under the three future climate scenarios (emission scenarios A1B, A2 and B1), the geographic distribution of suitable habitat would shift from southwest to northeast, the suitable habitat area of scenario A1B increased most compared to other two, the ranking of the loss habitat area was scenario B1 > scenario A2 > scenario A1B, and the gain habitat area was scenario A1B > scenario A2 > scenario B1. The results of this work could be used as scientific basis for adapting and mitigating Chinese hybrid poplar planting to a climate change.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1496-1503

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] IPCC Climate change 2007. in: The physical science basis. Contribution of working group i to fourth assessment report of the intergovernmental panel on climate change (ipcc); Cambridge, United Kingdom and New York, NY, USA (2007).

DOI: 10.1017/cbo9781107415416

Google Scholar

[2] Y. Ding, G. Ren, Z. Zhao, Y. Xu, Y. Luo, Q. Li and J. Zhang: Detection, causes and projection of climate change over china: An overview of recent progress. Adv. Atmos. Sci. Vol. 24 (2007), P. 954.

DOI: 10.1007/s00376-007-0954-4

Google Scholar

[3] G.E. Rehfeldt, C.C. Ying, D.L. Spittlehouse and D.A. Hamilton: Genetic responses to climate in pinus contorta: Niche breadth, climate change, and reforestation. Ecol. Monogr. Vol. 69 (1999), p.375.

DOI: 10.2307/2657162

Google Scholar

[4] A. Hamann and T. Wang: Potential effects of climate change on ecosystem and tree species distribution in british columbia. Ecology Vol. 87 (2006), p.2773.

DOI: 10.1890/0012-9658(2006)87[2773:peocco]2.0.co;2

Google Scholar

[5] T. Wang, E.M. Campbell, G.A. O'Neill and S.N. Aitken: Projecting future distributions of ecosystem climate niches: Uncertainties and management applications. For. Ecol. Manage. Vol. 279 (2012), p.128.

DOI: 10.1016/j.foreco.2012.05.034

Google Scholar

[6] S. Wu, Y. Yin, D. Zhao, M. Huang, X. Shao and E. Dai: Impact of future climate change on terrestrial ecosystems in china. Int. J. Climatol. Vol. 30 (2010), p.866.

DOI: 10.1002/joc.1938

Google Scholar

[7] S.L. Piao, J.Y. Fang, P. Ciais, P. Peylin, Y. Huang, S. Sitch and T. Wang: The carbon balance of terrestrial ecosystems in china. Nature Vol. 458 (2009), p.1009.

DOI: 10.1038/nature07944

Google Scholar

[8] L. Jia, S. Liu, L. Zhu, J. Hu and X. Wang: Carbon storage and density of poplars in china. Journal of Nanjing Forestry University: Natural Sciences Edition Vol. 37 (2013), p.1 (in Chinese).

Google Scholar

[9] T. Wang, A. Hamann, D.L. Spittlehouse and T.Q. Murdock: ClimateWNA-high-resolution spatial climate data for western north america. J. Appl. Meteorol. Climatol. Vol. 51 (2012), p.16.

DOI: 10.1175/jamc-d-11-043.1

Google Scholar

[10] J. Dai, L. Cao and G. Wang: Long-term simulation of china's climate data-establishment and validation of the dynamic free-scale model. Journal of Nanjing Forestry University: Natural Sciences Edition Vol. 37 (2013), p.82 (in Chinese).

Google Scholar

[11] T. Wang, A. Hamann, D.L. Spittlehouse and S.N. Aitken: Development of scale-free climate data for western canada for use in resource management. Int. J. Climatol. Vol. 26 (2006), p.383.

DOI: 10.1002/joc.1247

Google Scholar

[12] A. Hamann and T.L. Wang: Models of climatic normals for genecology and climate change studies in british columbia. Agr. Forest. Meteorol. Vol. 128 (2005), p.211.

DOI: 10.1016/j.agrformet.2004.10.004

Google Scholar

[13] E.S. Epstein: On obtaining daily climatological values from monthly means. J. Climate. Vol. 4 (1991), p.365.

DOI: 10.1175/1520-0442(1991)004<0365:oodcvf>2.0.co;2

Google Scholar

[14] R. Khanum, A.S. Mumtaz and S. Kumar: Predicting impacts of climate change on medicinal asclepiads of pakistan using maxent modeling. Acta. Oecol. Vol. 49 (2013), p.23.

DOI: 10.1016/j.actao.2013.02.007

Google Scholar

[15] S.J. Phillips and M. Dudik: Modeling of species distributions with maxent: New extensions and a comprehensive evaluation. Ecography Vol. 31 (2008), p.161.

DOI: 10.1111/j.0906-7590.2008.5203.x

Google Scholar

[16] J. Elith, S.J. Phillips, T. Hastie, M. Dudik, Y.E. Chee and C.J. Yates: A statistical explanation of maxent for ecologists. Divers. Distrib. Vol. 17 (2011), p.43.

DOI: 10.1111/j.1472-4642.2010.00725.x

Google Scholar

[17] M. Narusaka, M. Ohtani, T. Demura, R. Shimada, K. Shirasu and Y. Narusaka: Development of a model system comprising populus as a model tree and colletotrichum gloeosporioides as a model pathogen for studying host-pathogen interactions. Plant Biotechnol-Nar. Vol. 29 (2012).

DOI: 10.5511/plantbiotechnology.12.0924a

Google Scholar

[18] S. Fang, J. Xue and L. Tang: Biomass production and carbon sequestration potential in poplar plantations with different management patterns. J. Environ. Manage. Vol. 85 (2007), p.672.

DOI: 10.1016/j.jenvman.2006.09.014

Google Scholar

[19] Y. Liu, D. Yu, B. Xun, Y. Sun and R. Hao: The potential effects of climate change on the distribution and productivity of cunninghamia lanceolata in china. Environ. Monit. Assess. Vol. 186 (2014), p.135.

DOI: 10.1007/s10661-013-3361-6

Google Scholar

[20] W.Y. Dong, J. Qin, J.Y. Li, Y. Zhao, L.S. Nie and Z.Y. Zhang: Interactions between soil water content and fertilizer on growth characteristics and biomass yield of chinese white poplar (populus tomentosa carr. ) seedlings. Soil Sci. Plant Nutr. Vol. 57 (2011).

DOI: 10.1080/00380768.2010.549445

Google Scholar