Uniform Hematite Hexagonal Nanodisks with Dominant (001) Facets: Hydrothermal Synthesis and Catalytic Performance for the Decomposition of Ammonium Perchlorate

Article Preview

Abstract:

Uniform hematite (α-Fe2O3) hexagonal nanodisks with dominant (001) facets have been synthesized via hydrothermal route assisted with ethylene glycol (EG). XRD, SEM, TEM, HRTEM and SAED were employed to characterize the synthesized samples. The results show that the moderate addition of EG in the hydrothermal system creates an equilibrium condition for the crystal nucleation and growth, resulting in the uniform α-Fe2O3 hexagonal nanodisks with dominant (001) facets. Due to the exposition of the special facets of (001) and (110), the α-Fe2O3 nanodisks express superior catalytic activity for the decomposition of ammonium perchlorate (AP).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

161-164

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Suryanarayana, C. C. Koch, Non-Equilibrium Processing of Materials, Pergamon Materials Series, Pergamon Press: New York, (1999).

DOI: 10.1016/s1470-1804(99)80058-3

Google Scholar

[2] Y. H. Zheng, Y. Cheng, Y. S. Wang, F. Bao, L. H. Zhou, X. F. Wei, Y. Y. Zhang, Q. Zheng: J Phys Chem B Vol. 110 (2006), pp.3093-3097.

Google Scholar

[3] Y. J. Jeon, D. T. Thangadurai, L. H. Piao, S. H. Yoon: Mater. Lett. Vol. 96 (2013), pp.27-30.

Google Scholar

[4] H. Xu, X. B. Wang, L. Z. Zhang: Powder Tech. Vol. 185 (2008). pp.176-180.

Google Scholar

[5] H. F. Liang, Z. C. Wang: Mater. Lett. Vol. 64 (2010), pp.410-2412.

Google Scholar

[6] X. Li, X. Yu, J. H. He, Z. Xu: J. Phys. Chem. C Vol. 113 (2009), pp.2837-2845.

Google Scholar

[7] Y. Wang, J. L. Cao, M. G. Yu, G. Sun, X. D. Wang, H. Bala, Z. Y. Zhang: Mater. Lett. Vol. 100 (2013), pp.102-105.

Google Scholar

[8] Y. Khan, S. K. Durrani, M. Siddique, M. Mehmood: Mater. Lett. Vol. 65 (2011), pp.2224-2227.

Google Scholar

[9] S. J. Park, S. Kim, S. Lee, Z. G. Khim, K. Char, T. Hyeon: J. Am. Chem. Soc. Vol. 122 (2000), pp.8581-8582.

Google Scholar

[10] Y. P. Chen, C. L. Lu, L. Xu, Y. Ma, W. H. Hou, J. J. Zhu: CrystEngComm Vol. 12 (2010), pp.3740-3747.

Google Scholar

[11] G. Xu, X. Q. Huang, Y. F. Zhang, S. Q. Deng, X. Wei, G. Shen, G. R. Han: CrystEngComm Vol. 15 (2013), p.7206.

Google Scholar

[12] C. W. Sun, Rajasekhara, J. B. Goodenough, F. Zhou: J. Am. Chem. Soc. Vol. 133 (2011), pp.2132-2135.

Google Scholar

[13] J. A. Venables, Introduction to surface and thin film process, Cambridge: Cambridge University Press; 2000, p.4.

Google Scholar