[1]
E. Fridman, U. Shaked, Delay-dependent stability and H∞ control: constant and time-varying delays, International Journal of Control, 76, 2003, P. 48–60.
DOI: 10.1080/0020717021000049151
Google Scholar
[2]
C.H. Lien, Delay-dependent stability criteria for uncertain neutral systems with multiple time-varying delays via LMI approach, IEEE Proceedings Control Theory&Applications, 148, 2005, P. 442–447.
DOI: 10.1049/ip-cta:20045124
Google Scholar
[3]
K. Ramakrishnan, G. Ray, Improved delay-range-dependent robust stability criteria for a class of Lur'e systems with sector-bounded nonlinearity, Journal of the Franklin Institute, 348, 2011, P. 1769–1786.
DOI: 10.1016/j.jfranklin.2011.04.015
Google Scholar
[4]
X. Jiang and Q.L. Han. Delay-depend robust stability for uncertain linear systems with interval time-varying delay. Automatic, 42(6), 2006, P. 1059-1065.
DOI: 10.1016/j.automatica.2006.02.019
Google Scholar
[5]
Park, P., Ko, J.W., Jeong, C. Reciprocally convex approach to stability of systems with time-varying delays, Automatica, 47, 2011, P. 235-238.
DOI: 10.1016/j.automatica.2010.10.014
Google Scholar
[6]
K. Liu and E. Fridman. Wirtinger's inequality and lyapunov-based sampled-data stabilization. Automatic, 48(1), 2012, P. 102-108.
DOI: 10.1016/j.automatica.2011.09.029
Google Scholar
[7]
Fernando O. Souza. Further improvement in stability criteria for linear systems with interval time-varying delay. IET Control Theory and Applications, 07(03), 2013, P. 440-446.
DOI: 10.1049/iet-cta.2012.0379
Google Scholar
[8]
Alexandre Seuret, Frederic Gouaisbaut, Emilia Fridman. Stability of the systems with Fast -varying delay using improved Wirtinger's inequality. IEEE Conference on Decision and Control(2013).
DOI: 10.1109/cdc.2013.6760004
Google Scholar