Research on the Subdivision Algorithm about the Approximate Development of the Undevelopable Surfaces

Article Preview

Abstract:

Modern industrial manufacturing contains different kinds of surface modeling, which is processed by planar materials. For the principle of the most efficient materials using, how to optimize subdivision undevelopable surface before development becomes an important topic in CAM design and manufacturing industries. The paper transforms the basic parameters of surface before subdivision, and gives the standards of subdivision surfaces. We proved the feasibility and the existence of triangle subdivision algorithm. By introducing double parameters MÖbius transformation , the subdivision surface is more uniform. At last, numerical examples prove that the algorithm about the approximate development of the undevelopable surfaces is effective and practical.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2418-2423

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Farouki R T. Optimal parameterizations[Jl. Computer Aided Geometric Design, 1997, 14(2): 153-168.

DOI: 10.1016/s0167-8396(96)00026-x

Google Scholar

[2] Kanzow C, Yamashita N, Fukushima M. Levenberg - Marquardt methods with strong local convergence properties for solving nonlinear equations with convex constraints[Jl Journal of Computational and Applied Mathematics, 2004, 172(2): 375-397.

DOI: 10.1016/j.cam.2004.02.013

Google Scholar

[3] Hormann K, Greiner G. MIPS: An efficient global parametrization method[R]. ERLANGEN-NUERNBERG UNIV (GERMANY) COMPUTER GRAPHICS GROUP, (2000).

Google Scholar

[4] Floater M, Hormann K. Parameterization of triangulations and unorganized points[M]. Tutorials on Multiresolution in Geometric Modelling. Springer Berlin Heidelberg, 2002: 287-316.

DOI: 10.1007/978-3-662-04388-2_11

Google Scholar

[5] Pottmann H, Wallner J. Approximation algorithms for developable surfaces[J]. Computer Aided Geometric Design, 1999, 16(6): 539-556.

DOI: 10.1016/s0167-8396(99)00012-6

Google Scholar

[6] Lee Y, Kim H S, Lee S. Mesh parameterization with a virtual boundary[J]. Com- puters & Graphics, 2002, 26(5): 677-686.

DOI: 10.1016/s0097-8493(02)00123-1

Google Scholar

[7] Floater M S. Parameterization and smooth approximation of surface triangulation- s[J]. Computer Aided Geometric Design, 1997, 14(3): 231-250.

DOI: 10.1016/s0167-8396(96)00031-3

Google Scholar