A New Rate-Dependent Prandtl-Ishlinskii Model for Piezoelectric Actuators

Article Preview

Abstract:

This paper presents a new rate-dependent model for piezoelectric actuators. The proposed method directly utilizes a modified rate-dependent Prandtl-Ishlinskii hysteresis model to characterize the hysteresis and frequency effect of piezoelectric Actuators quickly and efficiently. To identify the model parameters, the least square method is adopted. Based on the identified model parameters, the rate-dependent model for Piezoelectric Actuators is established. By comparing the rate-dependent model with the real output of the Piezoelectric Actuators, the result shows that the new rate-dependent model could characterizes the hysteresis and frequency effect of Piezoelectric Actuator, which clearly demonstrates the effectiveness of the proposed Rate-Dependent Prandtl-Ishlinskii Model.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

598-602

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Moskalik, Andrew. Piezoelectric actuation: state of the art., (2001).

Google Scholar

[2] Woody, Shane, and Stuart Smith. Design and performance of a dual drive System for tip-tilt a- ngular control of a 300mm diameter mirror., Mechatronics16. 7 (2006): 389-397.

DOI: 10.1016/j.mechatronics.2006.03.006

Google Scholar

[3] Kenton, Brian J., Andrew J. Fleming, and Kam K. Leang. Compact ultra-fast vertical nano po- ttioner for improving scanning probe microscope scan speed., Review of Scientific Instrument 82. 12 (2011): 123703.

DOI: 10.1063/1.3664613

Google Scholar

[4] Jung, Jongchul, and Kunsoo Huh. Simulation tool design for the two-axis nano stage of lithog-aphy systems., Mechatronics 20. 5 (2010): 574-581.

DOI: 10.1016/j.mechatronics.2010.06.003

Google Scholar

[5] Li, Yangmin, and Qingsong Xu. A totally decoupled piezo-driven XYZ flexure parallel Micro-positioning stage for micro/nanomanipulation., Automation Science and Engineering, IEEE Transactions on 8. 2 (2011): 265-279.

DOI: 10.1109/tase.2010.2077675

Google Scholar

[6] Ullmann, Amos. The piezoelectric valve-less pump-performance enhancement analysis., Sensors and Actuators A: Physical 69. 1 (1998): 97-105.

DOI: 10.1016/s0924-4247(98)00058-2

Google Scholar

[7] Moriyama, Shigeo, Fumihiko Uchida, and Eilchi Seya. Development of a precision diamondturning machine for fabrication of asymmetric aspheric mirrors., Opt Eng 27. 11(1998): 1008-12.

Google Scholar

[8] Ang, Wei Tech, Pradeep K. Khosla, and Cameron N. Riviere. "Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory-tracking application. Me-chatronics, IEEE/ASME Transactions on12. 2 (2007): 134-142.

DOI: 10.1109/tmech.2007.892824

Google Scholar

[9] Al Janaideh, Mohammad, and Pavel Krejci. Inverse rate-dependent Prandtl–Ishlinskii model f- or feedforward compensation of hysteresis in a piezomicropositioning actuator., Mechatronics, IEEE/ASME Transactions on18. 5 (2013): 1498-1507.

DOI: 10.1109/tmech.2012.2205265

Google Scholar

[10] Al Janaideh, M., S. Rakheja, and C. Y. Su. Inverse rate-dependent Prandtl-Ishlinskii model for hysteresis nonlinearities compensation. " Automation and Logistics, 2009. ICAL, 09. IEEE In- ternational Conference on. IEEE, (2009).

DOI: 10.1109/ical.2009.5262967

Google Scholar

[11] Janocha, Hartmut, and Klaus Kuhnen. Real-time compensation of hysteresis and creep in pie- zoelectric actuators., Sensors and actuators A: Physical 79. 2 (2000): 83-89.

DOI: 10.1016/s0924-4247(99)00215-0

Google Scholar

[12] Brokate, Martin. Hysteresis and phase transitions. Vol. 121. Springer, (1996).

Google Scholar

[13] Yu, Yunhe, et al. Dynamic Preisach modelling of hysteresis for the piezoceramic actuator syst- em., Mechanism and Machine Theory 37. 1 (2002): 75-89.

DOI: 10.1016/s0094-114x(01)00060-x

Google Scholar