[1]
Moskalik, Andrew. Piezoelectric actuation: state of the art., (2001).
Google Scholar
[2]
Woody, Shane, and Stuart Smith. Design and performance of a dual drive System for tip-tilt a- ngular control of a 300mm diameter mirror., Mechatronics16. 7 (2006): 389-397.
DOI: 10.1016/j.mechatronics.2006.03.006
Google Scholar
[3]
Kenton, Brian J., Andrew J. Fleming, and Kam K. Leang. Compact ultra-fast vertical nano po- ttioner for improving scanning probe microscope scan speed., Review of Scientific Instrument 82. 12 (2011): 123703.
DOI: 10.1063/1.3664613
Google Scholar
[4]
Jung, Jongchul, and Kunsoo Huh. Simulation tool design for the two-axis nano stage of lithog-aphy systems., Mechatronics 20. 5 (2010): 574-581.
DOI: 10.1016/j.mechatronics.2010.06.003
Google Scholar
[5]
Li, Yangmin, and Qingsong Xu. A totally decoupled piezo-driven XYZ flexure parallel Micro-positioning stage for micro/nanomanipulation., Automation Science and Engineering, IEEE Transactions on 8. 2 (2011): 265-279.
DOI: 10.1109/tase.2010.2077675
Google Scholar
[6]
Ullmann, Amos. The piezoelectric valve-less pump-performance enhancement analysis., Sensors and Actuators A: Physical 69. 1 (1998): 97-105.
DOI: 10.1016/s0924-4247(98)00058-2
Google Scholar
[7]
Moriyama, Shigeo, Fumihiko Uchida, and Eilchi Seya. Development of a precision diamondturning machine for fabrication of asymmetric aspheric mirrors., Opt Eng 27. 11(1998): 1008-12.
Google Scholar
[8]
Ang, Wei Tech, Pradeep K. Khosla, and Cameron N. Riviere. "Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory-tracking application. Me-chatronics, IEEE/ASME Transactions on12. 2 (2007): 134-142.
DOI: 10.1109/tmech.2007.892824
Google Scholar
[9]
Al Janaideh, Mohammad, and Pavel Krejci. Inverse rate-dependent Prandtl–Ishlinskii model f- or feedforward compensation of hysteresis in a piezomicropositioning actuator., Mechatronics, IEEE/ASME Transactions on18. 5 (2013): 1498-1507.
DOI: 10.1109/tmech.2012.2205265
Google Scholar
[10]
Al Janaideh, M., S. Rakheja, and C. Y. Su. Inverse rate-dependent Prandtl-Ishlinskii model for hysteresis nonlinearities compensation. " Automation and Logistics, 2009. ICAL, 09. IEEE In- ternational Conference on. IEEE, (2009).
DOI: 10.1109/ical.2009.5262967
Google Scholar
[11]
Janocha, Hartmut, and Klaus Kuhnen. Real-time compensation of hysteresis and creep in pie- zoelectric actuators., Sensors and actuators A: Physical 79. 2 (2000): 83-89.
DOI: 10.1016/s0924-4247(99)00215-0
Google Scholar
[12]
Brokate, Martin. Hysteresis and phase transitions. Vol. 121. Springer, (1996).
Google Scholar
[13]
Yu, Yunhe, et al. Dynamic Preisach modelling of hysteresis for the piezoceramic actuator syst- em., Mechanism and Machine Theory 37. 1 (2002): 75-89.
DOI: 10.1016/s0094-114x(01)00060-x
Google Scholar