Stress-Strain Characteristics of Polyester Composites with Singlewall, Multiwall and Functionalized Carbon Nanotubes

Article Preview

Abstract:

Performance evaluation of the polyester composites with added carbon nanotubes is presented herein, based on the results of compressive tests. Composites were obtained from polyester resin mixed with three types of carbon nanotubes: singlewall, multiwall and functionalized. The contents of carbon nanotubes were 0.1, 0.15 and 0.2 wt%. Cylindrical specimens with a diameter of 6 mm and a height of 9 mm were designed and prepared in conformity with the standards. Compressive tests were performed according to ISO 604, at the speeds of 1, 5, 10, 25 and 50 mm/min. Morfological study of the samples was carried out using SEM analysis. Dispersive X-ray spectrum in energy, associated with SEM micrograph, enabled to notice the elements existing in the composite. Stress-strain characteristics of polyester composite were determined through the compressive tests. The results revealed improved mechanical behavior of polyester composite, for test speed under 10 mm/min.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

382-386

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Gómez-Del Río, J. Rodríguez, R. A Pearson, Compressive properties of nanoparticle modified epoxy resin at different strain rates, Compos. Part B: Eng. 57 (2014) 173-179.

DOI: 10.1016/j.compositesb.2013.10.002

Google Scholar

[2] M.M. Shokrieh, A. Saeedi,  M. Chitsazzadeh, Evaluating the effects of multi-walled carbon nanotubes on the mechanical properties of chopped strand mat/polyester composites, Mater. Design 56 (2014) 274-279.

DOI: 10.1016/j.matdes.2013.11.017

Google Scholar

[3] F. Mujika, N. Carbajal, , A. Arrese, I. Mondragon, Determination of tensile and compressive moduli by flexural tests, Polym. Test. 25 (2006) 766-771.

DOI: 10.1016/j.polymertesting.2006.05.003

Google Scholar

[4] G. Andrei, D. Dima, I. Birsan, L. Andrei, A. Circiumaru, Effect of ferrite on Mechanical Behaviour of Glass Fibers Reinforced Polymer Composite, Mat. Plast. 46 (2009) 284-287.

Google Scholar

[5] Z. Wu, L. Meng, L. Liu, Z. Jiang, L. Xing, D. Jiang, Y. Huang, Interfacial microstructure and properties of carbon fiber-reinforced unsaturated polyester composites modified with carbon nanotubes, J. Adhes. Sci. Technol. 28 (2014) 444-453.

DOI: 10.1080/01694243.2013.838341

Google Scholar

[6] L. Deleanu, I.G. Birsan, G. Andrei, M. Ripa, P. Badea, PTFE Composites and Water Lubrication. 1. Tribological Characterization, Mat. Plast. 44 (2007) 66-72.

Google Scholar

[7] M.J. Biercuk, M.C. Llaguno, M. Radosavljevic, J.K. Hyun, A.T. Johnson, J.E. Fischer, Carbon nanotube composites for thermal management, Appl. Phys. Lett. 80 (2002) 2767-2769.

DOI: 10.1063/1.1469696

Google Scholar

[8] F. Du, C. Guthy, T. Kashiwagi, J.E. Fischer, K.I. Winey, An infiltration method for preparing single-wall nanotube/ epoxy composites with improved thermal conductivity, J. Polym. Sci. Pol. Phys. 44 (2006) 1513-1519.

DOI: 10.1002/polb.20801

Google Scholar

[9] L. Ciupagea, G. Andrei, D. Dima, M. Murarescu, Specific heat and thermal expansion of polyester composites containing singlewall -, multiwall - and functionalized carbon nanotubes, Dig. J. Nanomater. Bios. 8 (2013) 1611 – 1619.

DOI: 10.4028/www.scientific.net/amm.657.382

Google Scholar

[10] F. Gardea,  D.C. Lagoudas,  Characterization of electrical and thermal properties of carbon nanotube/epoxycomposites, Compos. Part B: Eng. 56 (2014) 611-620.

DOI: 10.1016/j.compositesb.2013.08.032

Google Scholar

[11] H. Yurdakul, A.T. Seyhan, S. Turan, M. Tanoglu, W. Bauhofer, K. Schulte, Electric field effects on CNTs/vinyl ester suspensions and the resulting electrical and thermal composite properties, Compos. Sci. Technol. 70 (2010) 2102-2110.

DOI: 10.1016/j.compscitech.2010.08.007

Google Scholar

[12] A. Circiumaru, G. Andrei, I. Birsan, A. Semenescu, 2009, Electrical Conductivity of Fabric Based Filled Epoxy Composites, Mat. Plast. 46 (2009) 211-214.

Google Scholar

[13] D. Dima, G. Andrei, Investigation of the Effect of Fe3O4 Particles on the Interface of Gf-Pr-Fa Magnetic Composite, Materialwiss. Werkst. 34 (2003) 349-353.

Google Scholar

[14] G. Andrei, D. Dima, L. Andrei, Lightweight magnetic composites for aircraft applications, J. Optoelectron. Adv. M. 8 (2006) 726-730.

Google Scholar

[15] A. Battisti, A.A. Skordos, I.K. Partridge, Monitoring dispersion of carbon nanotubes in a thermosetting polyester resin, Compos. Sci. Technol. 69 (2009) 1516-1520.

DOI: 10.1016/j.compscitech.2008.05.012

Google Scholar

[16] J.Z. Kovacs, K. Andresen, J.R. Pauls, C.P. Garcia, M. Schossig, K. Schulte, W. Bauhofer, Analyzing the quality of carbon nanotube dispersions in polymers using scanning electron microscopy, Carbon 45 (2007) 1279-1288.

DOI: 10.1016/j.carbon.2007.01.012

Google Scholar

[17] D. Dima, M. Murarescu, G. Andrei, Dispersion of carbon nanotubes coated with iron (III) oxide into polymer composite under oscillating magnetic field, Dig. J. Nanomater. Bios.  5 (2010) 1009-1014.

Google Scholar