[1]
Khizgiyayev, Self-excited oscillations of a two-mass oscillator with dry stick-slip, friction, Journal of Applied Mathematics and Mechanics, 71, 6, (2007) 905-913.
DOI: 10.1016/j.jappmathmech.2007.12.009
Google Scholar
[2]
M. Krack, L. Panning-von Scheidt, J. Wallaschek, On the computation of the slow dynamics of nonlinear modes of mechanical systems, Mechanical Systems and Signal Processing, 42, 1–2, (2014) 71-87.
DOI: 10.1016/j.ymssp.2013.08.031
Google Scholar
[3]
S. Chatterjee, Resonant locking in viscous and dry friction damper kinematically driving mechanical oscillators, Journal of Sound and Vibration, 332, 14, (2013) 3499-3516.
DOI: 10.1016/j.jsv.2012.12.042
Google Scholar
[4]
A. C. J. Luo, J. Huang, Discontinuous dynamics of a non-linear, self-excited, friction-induced, periodically forced oscillator, Nonlinear Analysis: Real World Applications, 13, 1, (2012) 241-257.
DOI: 10.1016/j.nonrwa.2011.07.030
Google Scholar
[5]
M. Krack, S. Tatzko, L. Panning-von Scheidt, J. Wallaschek, Reliability optimization of friction-damped systems using nonlinear modes, Journal of Sound and Vibration, 333, 13, (2014) 2699-2712.
DOI: 10.1016/j.jsv.2014.02.008
Google Scholar
[6]
K. Zimmermann, I. Zeidis, M. Pivovarov, K. Abaza, Forced Nonlinear Oscillator with Nonsymmetric Dry Friction, Archive of Applied Mechanics, 77, (2007) 353-362.
DOI: 10.1007/s00419-006-0072-2
Google Scholar
[7]
N. van de Wouw, R. I. Leine, Attractivity of Equilibrium sets of Systems with Dry Friction, Nonlinear Dynamics, 35, (2004) 19-39.
DOI: 10.1023/b:nody.0000017482.61599.86
Google Scholar
[8]
P. Teodorescu, N. –D. Stănescu, N. Pandrea, Numerical Analysis with Applications in Mechanics and Engineering, Wiley, Hoboken, (2013).
Google Scholar