[1]
F. Imaduddin, S.A. Mazlan, H. Zamzuri, I.I.M. Yazid, Design and performance analysis of a compact magnetorheological valve with multiple annular and radial gaps, J. Intell. Mater. Syst. Struct. (2013).
DOI: 10.1177/1045389x13508332
Google Scholar
[2]
I. Ismail, S.A. Mazlan, H. Zamzuri, A.G. Olabi, Fluid–particle separation of magnetorheological fluid in squeeze mode, Jpn. J. Appl. Phys. 51 (2012) 067301.
DOI: 10.1143/jjap.51.067301
Google Scholar
[3]
Ubaidillah, K. Hudha, H. Jamaluddin, Simulation and experimental evaluation on a Skyhook policy-based fuzzy logic control for semi-active suspension system, Int. J. Struct. Eng. 2 (2011) 243-272.
DOI: 10.1504/ijstructe.2011.040783
Google Scholar
[4]
Ubaidillah, K. Hudha, F.A.A. Kadir, Modelling, characterisation and force tracking control of a magnetorheological damper under harmonic excitation, Int. J. Model. Identif. Control. 13 (2011) 9-21.
DOI: 10.1504/ijmic.2011.040485
Google Scholar
[5]
X. Zhu, X. Jing, L. Cheng, Magnetorheological fluid dampers: A review on structure design and analysis, J. Intell. Mater. Syst. Struct. 23 (2012) 839-873.
Google Scholar
[6]
F. Imaduddin, S.A. Mazlan, H. Zamzuri, A Design and modelling review of rotary magnetorheological damper, Mater. Des. 51 (2013) 575-591.
DOI: 10.1016/j.matdes.2013.04.042
Google Scholar
[7]
J. Engmann, C. Servais, A.S. Burbidge, Squeeze flow theory and applications to rheometry: A review, J. Nonnewton. Fluid Mech. 132 (2005) 1-27.
DOI: 10.1016/j.jnnfm.2005.08.007
Google Scholar
[8]
M. Zeinali, S.A. Mazlan, A.Y. Abd Fatah, H. Zamzuri, A phenomenological dynamic model of a magnetorheological damper using a neuro-fuzzy system, Smart Mater. Struct. 22 (2013) 125013.
DOI: 10.1088/0964-1726/22/12/125013
Google Scholar
[9]
C.S.N. Azwadi, M. Zeinali, A. Safdari, A. Kazemi, Adaptive-network-based fuzzy inference system analysis to predict the temperature and flow fields in a lid-driven cavity, Numer. Heat Transf. Part A Appl. 63 (2013) 906-920.
DOI: 10.1080/10407782.2013.757154
Google Scholar
[10]
J. -S.R. Jang, ANFIS: Adaptive-network-based fuzzy inference system, IEEE Trans. Syst. Man. Cybern. 23 (1993) 665-685.
DOI: 10.1109/21.256541
Google Scholar
[11]
T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, IEEE Trans. Syst. Man. Cybern. SMC-15 (1985) 116-132.
DOI: 10.1109/tsmc.1985.6313399
Google Scholar
[12]
L. -Y. Wei, A GA-weighted ANFIS model based on multiple stock market volatility causality for TAIEX forecasting, Appl. Soft Comput. 13 (2013) 911-920.
DOI: 10.1016/j.asoc.2012.08.048
Google Scholar