[1]
Hansel, C.M., Fendorf, S., Sutton, S., Newville, M. 2001. Characterization of Fe plaque and associated metals on the roots of mine-waste impacted aquatic plants. Environ Sci Technol. 35(19): 3863-3868.
DOI: 10.1021/es0105459
Google Scholar
[2]
Liu, W.J., Zhu, Y.G., Hu, Y., Williams, P.N., Gault, A.G., Meharg, A.A., Charnoch, J.M., Smith, F.A. 2006. Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (Oryza sativa L. ). Environ Sci Technol. 40(18): 5730-5736.
DOI: 10.1021/es060800v
Google Scholar
[3]
Liu, C.Y., Chen, C.L., Gong, X.F., Zhou, W.B., Yang, J.Y. 2014. Progress in research of iron plaque on root surface of wetland plants. Acta Ecologica Sinica. 34(10): 1-11.
DOI: 10.5846/stxb201304110685
Google Scholar
[4]
Ye, Z.H., Baker, A.J.M., Wong, M.H., Willis, A.J. 1997. Copper and nickel uptake, accumulation and tolerance in Typha latifolia with and without iron plaque on the root surface. New Phytol . 136(3): 481-488.
DOI: 10.1046/j.1469-8137.1997.00758.x
Google Scholar
[5]
Batty, L.C., Baker, A.J.M., Wheeler, B.D., Curtis, C.D. 2000. The effect of pH and plaque on the uptake of Cu and Mn in Phragmites australis (Cav. ) Trin ex. Steudel. Ann Bot. 86(3): 647-653.
DOI: 10.1006/anbo.2000.1191
Google Scholar
[6]
Liu, J.G., Leng, X.M., Wang, M.X., Zhu, Z.Q., Dai, Q.H. 2011. Iron plaque formation on roots of different rice cultivars and the relation with lead uptake. Ecotox Environ Safe. 74(5): 1304-1309.
DOI: 10.1016/j.ecoenv.2011.01.017
Google Scholar
[7]
Greipsson, S. 1995. Effect of iron plaque on roots of rice on growth of plants in excess zinc and accumulation of phosphorus in plants in excess copper or nickel. J Plant Nutr. 18(8): 1659-1665.
DOI: 10.1080/01904169509365011
Google Scholar
[8]
Lee C H, Hsieh Y C, Lin Z H, Lee D Y. Iron plaque formation and its effect on arsenic uptake by different genotypes of paddy rice[J]. Plant and Soil, 2013, 363(1-2): 231-241.
DOI: 10.1007/s11104-012-1308-2
Google Scholar
[9]
Huang, Y.C., Chen, Z., Liu, W.J. 2011. Influence of iron plaque and cultivars on antimony uptake by and translocation in rice (Oryza sativa L. ) seedlings exposed to Sb(III) or Sb(V). Plant Soil. 352(1-2): 41-49.
DOI: 10.1007/s11104-011-0973-x
Google Scholar
[10]
Okkenhaug, G., Zhu, Y.G., He, J.W., Li, X., Luo, L., Mulder, J. 2012. Antimony (Sb) and arsenic (As) in Sb mining impacted paddy soil from Xikuangshan, China: differences in mechanisms controlling soil sequestration and uptake in rice. Environ Sci Technol. 46(6): 3155-3162.
DOI: 10.1021/es2022472
Google Scholar
[11]
Zhou, X.B., Shi, W.M. 2007. Effect of root surface iron plaque on se translocation and uptake by Fe-deficient rice. Pedosphere. 17(5): 580-587.
DOI: 10.1016/s1002-0160(07)60068-x
Google Scholar
[12]
Cai, M.Z., Zhang, S.N., Xing, C.H., Wang, F.M., Zhu, L., Wang, N., Lin, L.Y. 2012. Interaction between iron plaque and root border cells ameliorates aluminum toxicity of Oryza sativa differing in aluminum tolerance. Plant Soil. 353(1-2): 155-167.
DOI: 10.1007/s11104-011-1019-0
Google Scholar
[13]
Ma, X., Liu, J., Wang, M. 2013. Differences between rice cultivars in iron plaque formation on roots and plant lead tolerance. Advance J Food Sci Technol. 5(02): 160-163.
DOI: 10.19026/ajfst.5.3237
Google Scholar
[14]
Zhong, S.Q., Shi, J.C., Xu, J.M. 2010. Influence of iron plaque on accumulation of lead by yellow flag (Iris pseudacorus L. ) grown in artificial Pb-contaminated soil. J Soils Sediments. 10(5): 964-970.
DOI: 10.1007/s11368-010-0213-7
Google Scholar
[15]
Siqueira-Silva, A.I., Silva, L.C.D., Azevedo, A.A., Oliva, M.A. 2012. Iron plaque formation and morphoanatomy of roots from species of restinga subjected to excess iron. Ecotox Environ Safe. 78: 265-275.
DOI: 10.1016/j.ecoenv.2011.11.030
Google Scholar
[16]
Yang, L.F., Li, Y.W., Yang, X.Y., Xiao, H., Peng, H., Deng, S.H. 2011. Effects of iron plaque on phosphorus uptake by Pilea cadierei cultured in constructed wetland. Procedia Environmental Sci. 11: 1508 - 1512.
DOI: 10.1016/j.proenv.2011.12.227
Google Scholar
[17]
Pi, N., Tam, N.F.Y., Wong, M.H. 2011. Formation of iron plaque on mangrove roots receiving wastewater and its role in immobilization of wastewater-borne pollutants. Mar Pollut Bull. 63(5-12): 402-411.
DOI: 10.1016/j.marpolbul.2011.05.036
Google Scholar
[18]
Chabbi, A. 1999. Juncus bulbosus as a pioneer species in acidic lignite mining lakes: interactions, mechanism and survival strategies. New Phytol. 144(1): 133-142.
DOI: 10.1046/j.1469-8137.1999.00503.x
Google Scholar
[19]
Sundby, B., Vale, C., Cacador, I., Catarino, F., Madureira, M.J., Caetano, M. 1998. Metal-rich concretions on the roots of salt marsh plants: Mechanism and rate of formation. Limnol Oceanogr. 43(2): 245-252.
DOI: 10.4319/lo.1998.43.2.0245
Google Scholar
[20]
Povidisa, K., Delefosse, M., Holmer, M. 2009. The formation of iron plaques on roots and rhizomes of the seagrass Cymodocea serrulata (R. Brown) Ascherson with implications for sulphide intrusion. Aquat Bot. 90(4): 303-308.
DOI: 10.1016/j.aquabot.2008.11.008
Google Scholar
[21]
Zhang, L.L., Yin, J.X., Jiang, Y.Z., Wang, H. 2012. Relationship between hydrological conditions and vegetation communities in Poyang Lake national nature reserve of China. Advances in water science. 23(6): 768-775.
DOI: 10.1016/j.ecoinf.2012.05.006
Google Scholar
[22]
Zhang, Q.J., Yu, X.B., Hu, B.H. 2013. Research on the Characteristics of Plant Communities in the Poyang Nanji Wetlands, China. Resources Sci. 35(1): 42-49.
Google Scholar
[23]
Gong, X.F., Huang, Z.Z., Zhang, J., Jian, M.F. 2006. Study on the speciation distributing and the plants enrichment of heavy metal in the wetland of Poyang Lake. Research of Environmental Sciences. 19(3): 34-40.
Google Scholar
[24]
Gong, X.F., Ou, L., Liu, Z.G., Fang, H.Y., Li, H.M. 2012. Effect of nutrient elements and EDTA on thecadmium bioaccumulation of Bidens pilosa L. Environmental Pollution & Control. 33(2): 1-6, 11.
Google Scholar
[25]
Stcyr, L., Crowder, A.A. 1989. Factors affecting iron plaque on the roots of Phragmites australis (Cav) Trin. ex Steudel. Plant Soil. 116(1): 85-93.
DOI: 10.1007/bf02327260
Google Scholar
[26]
Otte, M.L., Rozema, J., Koster, L., Haarsma, M.S., Broekman, R.A. 1989. Iron plaque on roots of Aster tripolium L.: interaction with zinc uptake. New Phytol. 111(2): 309-317.
DOI: 10.1111/j.1469-8137.1989.tb00694.x
Google Scholar
[27]
Tayor, G.T., Cowder, A.A. 1983. Use of the DCB technique for extract ion of hydrous iron oxides from roots of wetland plant. Am J Bot. 70: 1254-1257.
DOI: 10.1002/j.1537-2197.1983.tb12474.x
Google Scholar
[28]
Ye, Z.H., Baker, A.J.M., Wong, M.H., Willis, A.J. 1998. Zinc, lead and cadmium accumulation and tolerance in Typha latifolia as affected by iron plaque on the root surface. Aquat Bot. 61(1): 55-67.
DOI: 10.1016/s0304-3770(98)00057-6
Google Scholar
[29]
Liu, H.J., Zhang, J.L., Zhang, F.S. 2007. Role of iron plaque in Cd uptake by and translocation within rice (Oryza sativa L. ) seedlings grown in solution culture. Environmental and Experimental Botany. 59(3): 314-320.
DOI: 10.1016/j.envexpbot.2006.04.001
Google Scholar
[30]
Lei M, Tie, B.Q., Williams, P.N., Zheng, Y.M., Huang, Y.Z. 2011. Arsenic, cadmium, and lead pollution and uptake by rice (Oryza sativa L. ) grown in greenhouse. J Soils Sediments. 11(1): 115-123.
DOI: 10.1007/s11368-010-0280-9
Google Scholar